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1 
Introduction And Overview 

 

1.1 Use Of TCP/IP 

In 1982, the TCP/IP Internet included a few hundred computers at two dozen sites concentrated primarily in North America. 

In 1996, over 8,000,000 computer systems attach to the Internet in over 85 countries spread across 7 continents; its size 

continues to double every ten months. Many of the over 60,000 networks that comprise the Internet are located outside the US. 

In addition, most large corporations have chosen TCP/IP protocols for their private corporate internets, many of which are 

now as large as the connected Internet was twelve years ago. TCP/IP accounts for a significant fraction of networking throughout 

the world. Its use is growing rapidly in Europe, India, South America, and countries on the Pacific rim. 

Besides quantitative growth, the past decade has witnessed an important change in the way sites use TCP/IP. Early use 

focused on a few basic services like electronic mail, file transfer, and remote login. More recently, browsing information on the 

World Wide Web has replaced file transfer as the most popular global service; Uniform Resource Locators used with Web 

browsers appear on billboards and television shows. In addition, many companies are designing application protocols and 

building private application software. In fact, over one fifth of all traffic on the connected Internet arises from applications other 

than well-known services. New applications rely on TCP/IP to provide basic transport services. They add rich functionality that 

has enhanced the Internet environment and has enabled new groups of users to benefit from connectivity. 

The variety of applications using TCP/IP is staggering: it includes hotel reservation systems, applications that monitor and 

control offshore oil platforms, warehouse inventory control systems, applications that permit geographically distributed 

machines to share file access and display graphics, applications that transfer images and manage printing presses, as well as 

teleconferencing and multimedia systems. In addition, new applications are emerging constantly. 

As corporate internets mature, emphasis shifts from building internets to using them. As a result, more programmers need to 

know the fundamental principles and techniques used to design and implement distributed applications. 

1.2 Designing Applications For A Distributed Environment 

Programmers who build applications for a distributed computing environment follow a simple guideline: they try to make 

each distributed application behave as much as possible like the nondistributed version of the program. In essence, the goal of 

distributed computing is to provide an environment that hides the geographic location of computers and services and makes 

them appear to be local. 

For example, a conventional database system stores information on the same machine as the application programs that access 

it. A distributed version of such a database system permits users to access data from computers other than the one on which the 

data resides. If the distributed database applications have been designed well, a user will not know whether the data being 

accessed is local or remote. 

1.3 Standard And Nonstandard Application Protocols 

The TCP/IP protocol suite includes many application protocols, and new application protocols appear daily. In fact, whenever 

a programmer devises a distributed program that uses TCP/IP to communicate, the programmer has invented a new application 

protocol. Of course, some application protocols have been documented in RFCs and adopted as part of the official TCP/IP 

protocol suite. We refer to such protocols as standard application protocols. Other protocols, invented by application 

programmers for private use, are referred to as nonstandard application protocols. 

Most network managers choose to use standard application protocols whenever possible; one does not invent a new 

application protocol when an existing protocol suffices. For example, the TCP/IP suite contains standard application protocols 
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for services like file transfer, remote login, and electronic mail. Thus, a programmer would use a standard protocol for such 

services. 

1.4 An Example Of Standard Application Protocol Use 

Remote login ranks among the most popular TCP/IP applications. Although a given remote login session only generates data 

at the speed a human can type and only receives data at the speed a human can read, remote login is the fourth highest source of 

packets on the connected Internet, exceeded by Web browsing, file transfer, and network news. Many users rely on remote login 

as part of their working environment; they do not have a direct connection to the machines that they use for most computation. 

The TCP/IP suite includes a standard application protocol for remote login known as TELNET. The TELNET protocol 

defines the format of data that an application program must send to a remote machine to log onto that system and the format of 

messages the remote machine sends back. It specifies how character data should be encoded for transmission and how one sends 

special messages to control the session or abort a remote operation. 

For most users, the internal details of how the TELNET protocol encodes data are irrelevant; a user can invoke software that 

accesses a remote machine without knowing or caring about the implementation. In fact, using a remote service is usually as 

easy as using a local one. For example, computer systems that run TCP/IP protocols usually include a command that users 

invoke to run TELNET software. On Berkeley UNIX systems, the command is named telnet. To invoke it, a user types: 

telnet machine

where the argument machine denotes the domain name of the machine to which remote login access is desired. Thus, to form 

a TELNET connection to machine nic.ddn.mil a user types: 

telnet nic.ddn.mil

From the user's point of view, running telnet converts the user's terminal into a terminal that connects directly to the remote 

system. If the user is running in a windowing environment, the window in which the telnet command has been executed will be 

connected to the remote machine. Once the connection has been established, the telnet application sends each character the user 

types to the remote machine, and displays each character the remote machine emits on the user's screen. 

After a user invokes telnet and connects to a remote system, the remote system displays a prompt that requests the user to 

type a login identifier and a password. The prompt a machine presents to a remote user is identical to the prompt it presents to 

users who login on local terminals. Thus, TELNET provides each remote user with the illusion of being on a directly-connected 

terminal. 

1.5 An Example Connection 

As an example, consider what happens when a user invokes telnet and connects to machine cnri.reston.va. us: 

telnet cnri.reston.va.us

Trying...

Connected to xnri.reston.va.us.

Escape character is '^]'.

SunOS UNIX (CNRI)

login:

The initial output message, Trying... appears while the telnet program converts the machine name to an IP address and tries 

to make a valid TCP connection to that address. As soon as the connection has been established, telnet prints the second and 

third lines, telling the user that the connection attempt has succeeded and identifying a special character that the user can type to 

escape from the telnet application temporarily if needed (e.g., if a failure occurs and the user needs to abort the connection). The 

notation A] means that the user must hold the CONTROL key while striking the right bracket key. 
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The last few lines of output come from the remote machine. They identify the operating system as SunOS, and provide a 

standard login prompt. The cursor stops after the login: message, waiting for the user to type a valid login identifier. The user 

must have an account on the remote machine for the TELNET session to continue. After the user types a valid login identifier, 

the remote machine prompts for a password, and only permits access if the login identifier and password are valid. 

1.6 Using TELNET To Access An Alternative Service 

TCP/IP uses protocol port numbers to identify application services on a given machine. Software that implements a given 

service waits for requests at a predetermined (well-known) protocol port. For example, the remote login service accessed with the 

TELNET application protocol has been assigned port number 23. Thus, when a user invokes the telnet program, the program 

connects to port 23 on the specified machine. 

Interestingly, the TELNET protocol can be used to access services other than the standard remote login service. To do so, a 

user must specify the protocol port number of the desired service. The Berkeley UNIX telnet command uses an optional second 

argument to allow the user to specify an alternative protocol port. If the user does not supply a second argument, telnet uses port 

23. However, if the user supplies a port number, telnet connects to that port number. For example, if a user types: 

telnet cnri.reston.va.us 185

the telnet program will form a connection to protocol port number 185 at machine cnri.reston.va. us. The machine is owned 

by the Corporation For National Research Initiatives (CNRI). 

Port 185 on the machine at CNRI does not supply remote login service. Instead, it prints information about a recent change in 

the service offered, and then closes the connection. 

telnet cnri.reston.va.us 185

Trying...

Connected to cnri.reston.va.us.

Escape character is '^]'.

******NOTICE******

The KIS client program has been moved from this machine

to info.cnri.reston.va.us (132.151.1.15) on port 185.

******************

Contacting port 185 on machine info. cnri. reston. va. us allows one to access the Knowbot Information Service. After a 

connection succeeds, the user receives information about the service followed by a prompt for Knowbot commands: 

Trying...

Connected to info.cnri.reston.va.us.

Escape character is '^]'.

Knowbot Information Service

KIS Client (V2.0). Copyright CNRI 1990. All Rights Reserved.

KIS searches various Internet directory services to find

someone's street address, email address and phone number.

Type 'man' at the prompt for a complete reference with

examples. Type 'help' for a quick reference to commands.

Type 'news' for information about recent changes.

Backspace characters are '^H' or DEL
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Please enter your email address in our guest book...

(Your email address?) >

The first three lines are the same as in the example above because they come from the telnet program and not the remote 

service. The remaining lines differ, and clearly show that the service available on port 185 is not a remote login service. The 

greater-than symbol on the last line serves as the prompt for Knowbot commands. 

The Knowbot service searches well-known white pages directories to help a user find information about another user. For 

example, suppose one wanted to know the email address for David Clark, a researcher at MIT. Typing clark in response to the 

Knowbot prompt retrieves over 675 entries that each contain the name Clark. Most of the entries correspond to individuals with 

a first or last name of Clark, but some correspond to individuals with Clark in their affiliation (e.g., Clark College). Searching 

through the retrieved information reveals only one entry for a David Clark at MIT: 

 

Clark, David D. (DDCI) ddc@LCS.MIT.EDU (617)253-6003

1.7 Application Protocols And Software Flexibility 

The example above shows how a single piece of software, in this instance the telnet program, can be used to access more than 

one service. The design of the TELNET protocol and its use to access the Knowbot service illustrate two important points. First, 

the goal of all protocol design is to find fundamental abstractions that can be reused in multiple applications. In practice, 

TELNET suffices for a wide variety of services because it provides a basic interactive communication facility. Conceptually, the 

protocol used to access a service remains separate from the service itself. Second, when architects specify application services, 

they use standard application protocols whenever possible. The Knowbot service described above can be accessed easily because 

it uses the standard TELNET protocol for communication. Furthermore, because most TCP/IP software includes an application 

program that users can invoke to run TELNET, no additional client software is needed to access the Knowbot service. Designers 

who invent new interactive applications can reuse software if they choose TELNET for their access protocol. The point can be 

summarized: 

 

The TELNET protocol provides incredible flexibility because it only defines interactive communication 
and not the details of the service accessed. TELNET can be used as the communication mechanism for 
many interactive services besides remote login. 

 

1.8 Viewing Services From The Provider's Perspective 

The examples of application services given above show how a service appears from an individual user's point of view. The 

user runs a program that accesses a remote service, and expects to receive a reply with little or no delay. 

From the perspective of a computer that supplies a service, the situation appears quite different. Users at multiple sites may 

choose to access a given service at the same time. When they do, each user expects to receive a response without delay. 

To provide quick responses and handle many requests, a computer system that supplies an application service must use 

concurrent processing. That is, the provider cannot keep a new user waiting while it handles requests for the previous user. 

Instead, the software must process more than one request at a time. 

Because application programmers do not often write concurrent programs, concurrent processing can seem like magic. A 

single application program must manage multiple activities at the same time. In the case of TELNET, the program that provides 

remote login service must allow multiple users to login to a given machine and must manage multiple active login sessions. 

Communication for one login session must proceed without interference from others. 

The need for concurrency complicates network software design, implementation, and maintenance. It mandates new 

algorithms and new programming techniques. Furthermore, because concurrency complicates debugging, programmers must be 

especially careful to document their designs and to follow good programming practices. Finally, programmers must choose a 
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level of concurrency and consider whether their software will exhibit higher throughput if they increase or decrease the level of 

concurrency. 

This text helps application programmers understand the design, construction, and optimization of network application 

software that uses concurrent processing. It describes the fundamental algorithms for both sequential and concurrent 

implementations of application protocols and provides an example of each. It considers the tradeoffs and advantages of each 

design. Later chapters discuss the subtleties of concurrency management and review techniques that permit a programmer to 

optimize throughput automatically. To summarize: 

 

Providing concurrent access to application services is important and difficult; many chapters of this text 

explain and discuss concurrent implementations of application protocol software. 

 

1.9 The Remainder Of This Text 

This text describes how to design and build distributed applications. Although it uses TCP/IP transport protocols to provide 

concrete examples, the discussion focuses on principles, algorithms, and general purpose techniques that apply to most network 

protocols. Early chapters introduce the client-server model and socket interface. Later chapters present specific algorithms and 

implementation techniques used in client and server software as well as interesting combinations of algorithms and techniques 

for managing concurrency. 

In addition to its description of algorithms for client and server software, the text presents general techniques like tunneling, 

application-level gateways, and remote procedure calls. Finally, it examines a few standard application protocols like NFS and 

TELNET. 

Most chapters contain example software that helps illustrate the principles discussed. The software should be considered part 

of the text. It shows clearly how all the details fit together and how the concepts appear in working programs. 

1.10 Summary 

Many programmers are building distributed applications that use TCP/IP as a transport mechanism. Before programmers can 

design and implement a distributed application, they need to understand the client-server model of computing, the operating 

system interface an application program uses to access protocol software, the fundamental algorithms used to implement client 

and server software, and alternatives to standard clientserver interaction including the use of application gateways. 

Most network services permit multiple users to access the service simultaneously. The technique of concurrent processing 

makes it possible to build an application program that can handle multiple requests at the same time. Much of this text focuses 

on techniques for the concurrent implementation of application protocols and on the problem of managing concurrency. 

FOR FURTHER STUDY 

The manuals that vendors supply with their operating systems contain information on how to invoke commands that access 

services like TELNET. Many sites augment the set of standard commands with locally-defined commands. Check with your site 

administrator to find out about loc ally- available commands. 

EXERCISES 

1.1 Use TELNET from your local machine to login to another machine. How much delay, if any, do you experience when the second 

machine connects to the same local area network? How much delay do you notice when connected to a remote machine? 

 

1.2 Read the vendor's manual to find out whether your local version of the TELNET software permits connection to a port on the remote 

machine other than the. standard port used for remote login. 
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1.3 Determine the set of TCP/IP services available on your local computer. 

 

1.4 Use an FTP program to retrieve a file from a remote site. If the software does not provide statistics, estimate the transfer rate for a 

large file. Is the rate higher or lower than you expected? 

 

1.5 Use the finger command to obtain information about users at a remote site. 
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2 
The Client Server Model And Software Design 

 

2.1 Introduction 

From the viewpoint of an application, TCP/IP, like most computer communication protocols, merely provides basic 

mechanisms used to transfer data. In particular, TCP/IP allows a programmer to establish communication between two 

application programs and to pass data back and forth. Thus, we say that TCP/IP provides peer-to-peer communication. The peer 

applications can execute on the same machine or on different machines. 

Although TCP/IP specifies the details of how data passes between a pair of communicating applications, it does not dictate 

when or why peer applications interact, nor does it specify how programmers should organize such application programs in a 

distributed environment. In practice, one organizational method dominates the use of TCP/IP to such an extent that almost all 

applications use it. The method is known as the client-server paradigm. In fact, client-server interaction has become so 

fundamental in peer-to-peer networking systems that it forms the basis for most computer communication. 

This text uses the client-server paradigm to describe all application programming. It considers the motivations behind the 

client-server model, describes the functions of the client and server components, and shows how to construct both client and 

server software. 

Before considering how to construct software, it is important to define client-server concepts and terminology. The next 

sections define terminology that is used throughout the text. 

2.2 Motivation 

The fundamental motivation for the client-server paradigm arises from the problem of rendezvous. To understand the 

problem, imagine a human trying to start two programs on separate machines and have them communicate. Also remember that 

computers operate many orders of magnitude faster than humans. After the human initiates the first program, the program 

begins execution and sends a message to its peer. Within a few milliseconds, it determines that the peer does not yet exist, so it 

emits an error message and exits. Meanwhile, the human initiates the second program. Unfortunately, when the second program 

starts execution, it finds that the peer has already ceased execution. Even if the two programs retry to communicate continually, 

they can each execute so quickly that the probability of them sending messages to one another simultaneously is low. 

The client-server model solves the rendezvous problem by asserting that in any pair of communicating applications, one side 

must start execution and wait (indefinitely) for the other side to contact it. The solution is important because TCP/IP does not 

respond to incoming communication requests on its own. 

Because TCP/IP does not provide any mechanisms that automatically create running programs when a 
message arrives, a program must be waiting to accept communication before any requests arrive. 

Thus, to ensure that computers are ready to communicate, most system administrators arrange to have communication 

programs start automatically whenever the operating system boots. Each program runs forever, waiting for the next request to 

arrive for the service it offers. 

2.3 Terminology And Concepts 

The client-server paradigm divides communicating applications into two broad categories, depending on whether the 

application waits for communication or initiates it. This section provides a concise, comprehensive definition of the two 

categories, and relies on later chapters to illustrate them and explain many of the subtleties. 

2.3.1 Clients And Servers 
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The client-server paradigm uses the direction of initiation to categorize whether a program is a client or server. In general, 

an application that initiates peer-to-peer communication is called a client. End users usually invoke client software when they 

use a network service. Most client software consists of conventional application programs. Each time a client application 

executes, it contacts a server, sends a request, and awaits a response. When the response arrives, the client continues processing. 

Clients are often easier to build than servers, and usually require no special system privileges to operate. 

By comparison, a server is any program1 that waits for incoming communication requests from a client. The server receives a 

client's request, performs the necessary computation, and returns the result to the client. 

2.3.2 Privilege And Complexity 

Because servers often need to access data, computations, or protocol ports that the operating system protects, server software 

usually requires special system privileges. Because a server executes with special system privilege, care must be taken to ensure 

that it does not inadvertently pass privileges on to the clients that use it. For example, a file server that operates as a privileged 

program must contain code to check whether a given file can be accessed by a given client. The server cannot rely on the usual 

operating system checks because its privileged status overrides them. 

Servers must contain code that handles the issues of: 

• Authentication - verifying the identity of the client 

• Authorization - determining whether a given client is permitted to access the service the server supplies 

• Data security - guaranteeing that data is not unintentionally revealed or compromised 

• Privacy - keeping information about an individual from unauthorized access 

• Protection - guaranteeing that network applications cannot abuse system resources. 

As we will see in later chapters, servers that perform intense computation or handle large volumes of data operate more 

efficiently if they handle requests concurrently. The combination of special privileges and concurrent operation usually makes 

servers more difficult to design and implement than clients. Later chapters provide many examples that illustrate the differences 

between clients and servers. 

2.3.3 Standard Vs. Nonstandard Client Software 

Chapter I describes two broad classes of client application programs: those that invoke standard TCP/IP services (e.g., 

electronic mail) and those that invoke services defined by the site (e.g., an institution's private database system). Standard 
application services consist of those services defined by TCP/IP and assigned well-known, universally recognized protocol port 

identifiers; we consider all others to be locally-defined application services or nonstandard application services. 

The distinction between standard services and others is only important when communicating outside the local environment. 

Within a given environment, system administrators usually arrange to define service names in such a way that users cannot 

distinguish between local and standard services. Programmers who build network applications that will be used at other sites 

must understand the distinction, however, and must be careful to avoid depending on services that are only available locally. 

Although TCP/IP defines many standard application protocols, most commercial computer vendors supply only a handful of 

standard application client programs with their TCP/IP software. For example, TCP/IP software usually includes a remote 
terminal client that uses the standard TELNET protocol for remote login, an electronic mail client that uses the standard SMTP 

protocol to transfer electronic mail to a remote system, a file transfer client that uses the standard FTP protocol to transfer files 

between two machines, and a Web browser that uses the standard HTTP protocol to access Web documents. 

Of course, many organizations build customized applications that use TCP/IP to communicate. Customized, nonstandard 

applications range from simple to complex, and include such diverse services as image transmission and video teleconferencing, 

                                                        

1 Technically, a server is a program and not a piece of hardware. However, computer users frequently (mis)apply the term to the computer responsible for running a 

particular server program. For example, they might say, "That computer is our file server," when they mean, "That computer runs our file server program.” 
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voice transmission, remote real-time data collection, hotel and other on-line reservation systems, distributed database access, 

weather data distribution, and remote control of ocean-based drilling platforms. 

2.3.4 Parameterization Of Clients 

Some client software provides more generality than others. In particular, some client software allows the user to specify both 

the remote machine on which a server operates and the protocol port number at which the server is listening. For example, 

Chapter I shows how standard application client software can use the TELNET protocol to access services other than the 

conventional TELNET remote terminal service, as long as the program allows the user to specify a destination protocol port as 

well as a remote machine. 

Conceptually, software that allows a user to specify a protocol port number has more input parameters than other software, so 

we use the term fully parameterized client to describe it. Many TELNET client implementations interpret an optional second 

argument as a port number. To specify only a remote machine, the user supplies the name of the remote machine: 

 

telnet machine-name 

 

Given only a machine name, the telnet program uses the well-known port for the TELNET service. To specify both a remote 

machine and a port on that machine, the user specifies both the machine name and the port number: 

 

telnet machine-name port 

 

Not all vendors provide full parameterization for their client application software. Therefore, on some systems, it may be 

difficult or impossible to use any port other than the official TELNET port. In fact, it may be necessary to modify the vendor's 

TELNET client software or to write new TELNET client software that accepts a port argument and uses that port. Of course, 

when building client software, full parameterization is recommended. 

 

When designing client application software, include parameters that allow the user to fully specify the 
destination machine and destination protocol port number. 

 

Full parameterization is especially useful when testing a new client or server because it allows testing to proceed independent 

of the existing software already in use. For example, a programmer can build a TELNET client and server pair, invoke them 

using nonstandard protocol ports, and proceed to test the software without disturbing standard services. Other users can continue 

to access the old TELNET service without interference during the testing. 

2.3.5 Connectionless Vs. Connection-Oriented Servers 

When programmers design client-server software, they must choose between two types of interaction: a connectionless style 
or a connection-oriented style. The two styles of interaction correspond directly to the two major transport protocols that the 

TCP/IP protocol suite supplies. If the client and server communicate using UDP, the interaction is connectionless; if they use 

TCP, the interaction is connection-oriented. 

From the application programmer's point of view, the distinction between connectionless and connection-oriented 

interactions is critical because it determines the level of reliability that the underlying system provides. TCP provides all the 

reliability needed to communicate across an internet. It verifies that data arrives, and automatically retransmits segments that do 

not. It computes a checksum over the data to guarantee that it is not corrupted during transmission. It uses sequence numbers to 

ensure that the data arrives in order, and automatically eliminates duplicate packets. It provides flow control to ensure that the 
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sender does not transmit data faster than the receiver can consume it. Finally, TCP informs both the client and server if the 

underlying network becomes inoperable for any reason. 

By contrast, clients and servers that use UDP do not have any guarantees about reliable delivery. When a client sends a 

request, the request may be lost, duplicated, delayed, or delivered out of order. Similarly, a response the server sends back to a 

client may be lost, duplicated, delayed, or delivered out of order. The client and/or server application programs must take 

appropriate actions to detect and correct such errors. 

UDP can be deceiving because it provides best effort delivery. UDP does not introduce errors - it merely depends on the 

underlying IP internet to deliver packets. IP, in turn, depends on the underlying hardware networks and intermediate gateways. 

From a programmer's point of view, the consequence of using UDP is that it works well if the underlying internet works well. 

For example, UDP works well in a local environment because reliability errors seldom occur in a local environment. Errors 

usually arise only when communication spans a wide area internet. 

Programmers sometimes make the mistake of choosing connectionless transport (i.e., UDP), building an application that uses 

it, and then testing the application software only on a local area network. Because a local area network seldom or never delays 

packets, drops them, or delivers them out of order, the application software appears to work well. However, if the same software 

is used across a wide area internet, it may fail or produce incorrect results. 

Beginners, as well as most experienced professionals, prefer to use the connection oriented style of interaction. A connection- 

oriented protocol makes programming simpler, and relieves the programmer of the responsibility to detect and correct errors. In 

fact, adding reliability to a connectionless internet message protocol like UDP is a nontrivial undertaking that usually requires 

considerable experience with protocol design. 

Usually, application programs only use UDP if: (1) the application protocol specifies that UDP must be used (  presumably, 

the application protocol has been designed to handle reliability and delivery errors), (2) the application protocol relies on 

hardware broadcast or multicast, or (3) the application cannot tolerate the computational overhead or delay required for TCP 

virtual circuits. We can summarize: 

 

When designing client-server applications, beginners are strongly advised to use TCP because it provides 
reliable, connection-oriented communication. Programs only use UDP if the application protocol handles 
reliability, the application requires hardware broadcast or multicast, or the application cannot tolerate 
virtual circuit overhead. 

 

2.3.6 Stateless Vs. Stateful Servers 

Information that a server maintains about the status of ongoing interactions with clients is called state information. Servers 

that do not keep any state information are called stateless servers; others are called stateful servers. 

The desire for efficiency motivates designers to keep state information in servers. Keeping a small amount of information in 

a server can reduce the size of messages that the client and server exchange, and can allow the server to respond to requests 

quickly. Essentially, state information allows a server to remember what the client requested previously and to compute an 

incremental response as each new request arrives. By contrast, the motivation for statelessness lies in protocol reliability: state 

information in a server can become incorrect if messages are lost, duplicated, or delivered out of order, or if the client computer 

crashes and reboots. If the server uses incorrect state information when computing a response, it may respond incorrectly. 

2.3.7 A Stateful File Server Example 

An example will help explain the distinction between stateless and stateful servers. Consider a file server that allows clients 

to remotely access information kept in the files on a local disk. The server operates as an application program. It waits for a 

client to contact it over the network. The client sends one of two request types. It either sends a request to extract data from a 

specified file or a request to store data in a specified file. The server performs the requested operation and replies to the client. 
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On one hand, if the file server is stateless, it maintains no information about the transactions. Each message from a client 

that requests the server to extract data from a file must specify the complete file name (the name could be quite lengthy), a 

position in the file from which the data should be extracted, and the number of bytes to extract. Similarly, each message that 

requests the server to store data in a file must specify the complete file name, a position in the file at which the data should be 

stored, and the data to store. 

On the other hand, if the file server maintains state information for its clients, it can eliminate the need to pass file names in 

each message. The server maintains a table that holds state information about the file currently being accessed. Figure 2.1 shows 

one possible arrangement of the state information. 

 

When a client first opens a file, the server adds an entry to its state table that contains the name of the file, a handle (a small 

integer used to identify the file), and a current position in the file (initially zero). The server then sends the handle back to the 

client for use in subsequent requests. Whenever the client wants to extract additional data from the file, it sends a small message 

that includes the handle. The server uses the handle to look up the file name and current file position in its state table. The server 

increments the file position in the state table, so the next request from the client will extract new data. Thus, the client can send 

repeated requests to move through the entire file. When the client finishes using a file, it sends a message informing the server 

that the file will no longer be needed. In response, the server removes the stored state information. As long as all messages travel 

reliably between the client and server, a stateful design makes the interaction more efficient. The point is: 

 

In an ideal world, where networks deliver all messages reliably and computers never crash, having a 
server maintain a small amount of state information for each ongoing interaction can make messages 
smaller and processing simpler. 

 

Although state information can improve efficiency, it can also be difficult or impossible to maintain correctly if the 

underlying network duplicates, delays, or delivers messages out of order (e.g., if the client and server use UDP to communicate). 

Consider what happens to our file server example if the network duplicates a read request. Recall that the server maintains a 

notion of file position in its state information. Assume that the server updates its notion of file position each time a client 

extracts data from a file. If the network duplicates a read request, the server will receive two copies. When the first copy arrives, 

the server extracts data from the file, updates the file position in its state information, and returns the result to the client. When 

the second copy arrives, the server extracts additional data, updates the file position again, and returns the new data to the client. 

The client may view the second response as a duplicate and discard it, or it may report an error because it received two different 

responses to a single request. In either case, the state information at the server can become incorrect because it disagrees with the 

client's notion of the true state. 

When computers reboot, state information can also become incorrect. If a client crashes after performing an operation that 

creates additional state information, the server may never receive messages that allow it to discard the information. Eventually, 

the accumulated state information exhausts the server's memory. In our file server example, if a client opens 100 files and then 

crashes, the server will maintain 100 useless entries in its state table forever. 

A stateful server may also become confused (or respond incorrectly) if a new client begins operation after a reboot using the 

same protocol port numbers as the previous client that was operating when the system crashed. It may seem that this problem 

can be overcome easily by having the server erase previous information from a client whenever a new request for interaction 
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arrives. Remember, however, that the underlying internet may duplicate and delay messages, so any solution to the problem of 

new clients reusing protocol ports after a reboot must also handle the case where a client starts normally, but its first message to 

a server becomes duplicated and one copy is delayed. 

In general, the problems of maintaining correct state can only be solved with complex protocols that accommodate the 

problems of unreliable delivery and computer system restart. To summarize: 

 

In a real internet, where machines crash and reboot, and messages can be lost, delayed, duplicated, or 
delivered out of order, stateful designs lead to complex application protocols that are difficult to design, 
understand, and program correctly. 

 

2.3.8 Statelessness Is A Protocol Issue 

Although we have discussed statelessness in the context of servers, the question of whether a server is stateless or stateful 

centers on the application protocol more than the implementation. If the application protocol specifies that the meaning of a 

particular message depends in some way on previous messages, it may be impossible to provide a stateless interaction. 

In essence, the issue of statelessness focuses on whether the application protocol assumes the responsibility for reliable 

delivery. To avoid problems and make the interaction reliable, an application protocol designer must ensure that each message is 

completely unambiguous. That is, a message cannot depend on being delivered in order, nor can it depend on previous messages 

having been delivered. In essence, the protocol designer must build the interaction so the server gives the same response no 

matter when or how many times a request arrives. Mathematicians use the term idempotent to refer to a mathematical operation 

that always produces the same result. We use the term to refer to protocols that arrange for a server to give the same response to 

a given message no matter how many times it arrives. 

 

In an internet where the underlying network can duplicate, delay or deliver messages out of order or where 
computers running client applications can crash unexpectedly, the server should be stateless. The server 
can only be stateless if the application protocol is designed to make operations idempotent. 

 

2.3.9 Servers As Clients 

Programs do not always fit exactly into the definition of client or server. A server program may need to access network 

services that require it to act as a client. For example, suppose our file server program needs to obtain the time of day so it can 

stamp files with the time of access. Also suppose that the system on which it operates does not have a time-of-day clock. To 

obtain the time, the server acts as a client by sending a request to a time-of-day server as Figure 2.2 shows. 
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In a network environment that has many available servers, it is not unusual to find a server for one application acting as a 

client for another. Of course, designers must be careful to avoid circular dependencies among servers. 

2.4 Summary 

The client-server paradigm classifies a communicating application program as either a client or a server depending on 

whether it initiates communication. In addition to client and server software for standard applications, many TCP/IP users build 

client and server software for nonstandard applications that they define locally. 

Beginners and most experienced programmers use TCP to transport messages between the client and server because it 

provides the reliability needed in an internet environment. Programmers only resort to UDP if TCP cannot solve the problem. 

Keeping state information in the server can improve efficiency. However, if clients crash unexpectedly or the underlying 

transport system allows duplication, delay, or packet loss, state information can consume resources or become incorrect. Thus, 

most application protocol designers try to minimize state information. A stateless implementation may not be possible if the 

application protocol fails to make operations idempotent. 

Programs cannot be divided easily into client and server categories because many programs perform both functions. A 

program that acts as a server for one service can act as a client to access other services. 

FOR FURTHER STUDY 

Stevens [ 1990] briefly describes the client-server model and gives UNIX examples. Other examples can be found by 

consulting applications that accompany various vendors' operating systems. 

EXERCISES 

2.1 Which of your local implementations of standard application clients are fully parameterized? Why is full parameterization needed? 

 

2.2 Are standard application protocols like TELNET, FTP, SMTP, and NFS (Network File System) connectionless or connection-oriented? 
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2.3 What does TCP/IP specify should happen if no server exists when a client request arrives? (Hint: look at ICMP.) What happens on 

your local system? 

 

2.4 Write down the data structures and message formats needed for a stateless file server. What happens if two or more clients access the 

same file? What happens if a client crashes before closing a file? 

 

2.5 Write down the data structures and message formats needed for a stateful file server. Use the operations open, read, write, and close to 

access files. Arrange for open to return an integer used to access the file in read and write operations. How do you distinguish duplicate open 

requests from a client that sends an open, crashes, reboots, and sends an open again? 

 

2.6 In the previous exercise, what happens in your design if two or more clients access the same file? What happens if a client crashes 

before closing a file? 

 

2.7 Examine the NFS remote file access protocol carefully to identify which operations are idempotent. What errors can result if messages 

are lost, duplicated, or delayed?
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3 
Concurrent Processing In Client-Server Software 

 

3.1 Introduction 

The previous chapter defines the client-server paradigm. This chapter extends the notion of client-server interaction by 

discussing concurrency, a concept that provides much of the power behind client-server interactions but also makes the software 

difficult to design and build. The notion of concurrency also pervades later chapters, which explain in detail how servers provide 

concurrent access. 

In addition to discussing the general concept of concurrency, this chapter also reviews the facilities that an operating system 

supplies to support concurrent process execution. It is important to understand the functions described in this chapter because 

they appear in many of the server implementations in later chapters. 

3.2 Concurrency In Networks 

The term concurrency refers to real or apparent simultaneous computing. For example, a multi-user computer system can 

achieve concurrency by time-sharing, a design that arranges to switch a single processor among multiple computations quickly 

enough to give the appearance of simultaneous progress; or by multiprocessing, a design in which multiple processors perform 

multiple computations simultaneously. 

Concurrent processing is fundamental to distributed computing and occurs in many forms. Among machines on a single 

network, many pairs of application programs can communicate concurrently, sharing the network that interconnects them. For 

example, application A on one machine may communicate with application B on another machine, while application C on a 

third machine communicates with application D on a fourth. Although they all share a single network, the applications appear to 

proceed as if they operate independently. The network hardware enforces access rules that allow each pair of communicating 

machines to exchange messages. The access rules prevent a given pair of applications from excluding others by consuming all 

the network bandwidth. 

Concurrency can also occur within a given computer system. For example, multiple users on a timesharing system can each 

invoke a client application that communicates with an application on another machine. One user can transfer a file while 

another user conducts a remote login session. From a user's point of view, it appears that all client programs proceed 

simultaneously. 
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In addition to concurrency among clients on a single machine, the set of all clients on a set of machines can execute 

concurrently. Figure 3.1 illustrates concurrency among client programs running on several machines. 

Client software does not usually require any special attention or effort on the part of the programmer to make it usable 

concurrently. The application programmer designs and constructs each client program without regard to concurrent execution; 

concurrency among multiple client programs occurs automatically because the operating system allows multiple users to each 

invoke a client concurrently. Thus, the individual clients operate much like any conventional program. To summarize: 

 

Most client software achieves concurrent operation because the underlying operating system allows users 
to execute client programs concurrently or because users on many machines each execute client software 
simultaneously. An individual client program operates like any conventional program; it does not manage 
concurrency explicitly. 

 

3.3 Concurrency In Servers 

In contrast to concurrent client software, concurrency within a server requires considerable effort. As figure 3.2 shows, a 

single server program must handle incoming requests concurrently. 

To understand why concurrency is important, consider server operations that require substantial computation or 

communication. For example, think of a remote login server. It it operates with no concurrency, it can handle only one remote 

login at a time. Once a client contacts the server, the server must ignore or refuse subsequent requests until the first user finishes. 

Clearly, such a design limits the utility of the server, and prevents multiple remote users from accessing a given machine at the 

same time. 
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Chapter 8 discusses algorithms and design issues for concurrent servers, showing how they operate in principle. Chapters 9 

through 13 each illustrate one of the algorithms, describing the design in more detail and showing code for a working server. 

The remainder of this chapter concentrates on terminology and basic concepts used throughout the text. 

 

3.4 Terminology And Concepts 

Because few application programmers have experience with the design of concurrent programs, understanding concurrency 

in servers can be challenging. This section explains the basic concept of concurrent processing and shows how an operating 

system supplies it. It gives examples that illustrate concurrency, and defines terminology used in later chapters. 

3.4.1 The Process Concept 

In concurrent processing systems, the process abstraction defines the fundamental unit of computation1. The most essential 

information associated with a process is an instruction pointer that specifies the address at which the process is executing. Other 

information associated with a process includes the identity of the user that owns it, the compiled program that it is executing, 

and the memory locations of the process' program text and data areas. 

A process differs from a program because the process concept includes only the active execution of a computation, not the 

code. After the code has been loaded into a computer, the operating system allows one or more processes to execute it. In 

particular, a concurrent processing system allows multiple processes to execute the same piece of code "at the same time." This 

means that multiple processes may each be executing at some point in the code. Each process proceeds at its own rate, and each 

may begin or finish at an arbitrary time. Because each has a separate instruction pointer that specifies which instruction it will 

execute next, there is never any confusion. 

                                                        

1 Some systems use the terms task, job, or thread instead of process. 
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Of course, on a uniprocessor architecture, the single CPU can only execute one process at any instant in time. The operating 

system makes the computer appear to perform more than one computation at a time by switching the CPU among all executing 

processes rapidly. From a human observer's point of view, many processes appear to proceed simultaneously. In fact, one process 

proceeds for a short time, then another process proceeds for a short time, and so on. We use the term concurrent execution to 

capture the idea. It means "apparently simultaneous execution." On a uniprocessor, the operating system handles concurrency, 

while on a multiprocessor, all CPUs can execute processes simultaneously. 

The important concept is: 

 

Application programmers build programs for a concurrent environment without knowing whether the 
underlying hardware consists of a uniprocessor or a multiprocessor. 

 

3.4.2 Programs vs. Processes 

In a concurrent processing system, a conventional application program is merely a special case: it consists of a piece of code 

that is executed by exactly one process at a time. The notion of process differs from the conventional notion of program in other 

ways. For example, most application programmers think of the set of variables defined in the program as being associated with 

the code. However, if more than one process executes the code concurrently, it is essential that each process has its own copy of 

the variables. To understand why, consider the following segment of C code that prints the integers from 1 to 10: 

 

for ( i=1 ; i <= 10 ; i++)

printf("%d\n", i);

 

The iteration uses an index variable, i. In a conventional program, the programmer thinks of storage for variable i as being 

allocated with the code. However, if two or more processes execute the code segment concurrently, one of them may be on the 

sixth iteration when the other starts the first iteration. Each must have a different value for i. Thus, each process must have its 

own copy of variable i or confusion will result, To summarize: 

 

When multiple processes execute a piece of code concurrently, each process has its own, independent copy 
of the variables associated with the code. 

 

3.4.3 Procedure Calls 

In a procedure-oriented language, like Pascal or C, executed code can contain calls to subprograms (procedures or functions). 

Subprograms accept arguments, compute a result, and then return just after the point of the call. If multiple processes execute 

code concurrently, they can each be at a different point in the sequence of procedure calls. One process, A, can begin execution, 

call a procedure, and then call a second-level procedure before another process, B, begins. Process B may return from a 

first-level procedure call just as process A returns from a second-level call. 

The run-time system for procedure-oriented programming languages uses a stack mechanism to handle procedure calls. The 

run-time system pushes a procedure activation record on the stack whenever it makes a procedure call. Among other things, the 

activation record stores information about the location in the code at which the procedure call occurs. When the procedure 

finishes execution, the run-time system pops the activation record from the top of the stack and returns to the procedure from 

which the call occurred. Analogous to the rule for variables, concurrent programming systems provide separation between 

procedure calls in executing processes: 

 



 25

When multiple processes execute a piece of code concurrently, each has its own run-time stack of 
procedure activation records. 

 

3.5 An Example Of Concurrent Process Creation 

3.5.1 A Sequential C Example 

The following example illustrates concurrent processing in the UNIX operating system. As with most computational 

concepts, the programming language syntax is trivial; it occupies only a few lines of code. For example, the following code is a 

conventional C program that prints the integers from I to 5 along with their sum: 

 

/* sum.c - A conventional C program that sum integers from 1 to 5 */

#include <stdlib.h>

#include <stdio.h>

int sum; /* sum is a global variable */

main () {

int i; /* i is a local variable */

sum = 0;

for (i=1 ; i <=5 ; i++) { /* iterate i from 1 to 5 */

printf("The value of i is %d\n", i);

fflush(stdout); /* flush the buffer */

sum += i;

}

printf ("The sum is %d\n", sum);

exit(0); /* terminate the program */

}

When executed, the program emits six lines of output: 

The value of i is 1

The value of i is 2

The value of i is 3

The value of i is 4

The value of i is 5

The sum is 15
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3.5.2 A Concurrent Version 

To create a new process in UNIX, a program calls the system function fork2. In essence, fork divides the running program 

into two (almost) identical processes, both executing at the same place in the same code. The two processes continue just as if 

two users had simultaneously started two copies of the application. For example, the following modified version of the above 

example calls fork to create a new process. (Note that although the introduction of concurrency changes the meaning of the 

program completely, the call to fork occupies only a single line of code.) 

#include <stdlib.h>

#include <stdio.h>

int sum;

main() {

int i;

sun = 0;

fork(); /* create a new process */

for (i=1 ; i<=5 ; i++) {

printf ("The value of i is %d\n", i);

fflush(stdout);

sum += i;

}

printf ("The sum is %d\n", sum);

exit (0)

}

When a user executes the concurrent version of the program, the system begins with a single process executing the code. 

However, when the process reaches the call to fork, the system duplicates the process and allows both the original process and 

the newly created process to execute. Of course, each process has its own copy of the variables that the program uses. In fact, the 

easiest way to envision what happens is to imagine that the system makes a second copy of the entire running program. Then 

imagine that both copies run Oust as if two users had both simultaneously executed the program). To summarize: 

 

To understand the fork function, imagine that fork causes the operating system to make a copy of the 
executing program and allows both copies to run at the same time. 

 

On one particular uniprocessor system, the execution of our example concurrent program produces twelve lines of output: 

 

The value of i is 1

The value of i is 2

The value of i is 3

The value of i is 4

The value of i is 5

                                                        

2 To a programmer, the call to fork looks and acts like an ordinary function call in C. It is written fork() . At run-time, however, control passes to the operating 

system, which creates a new process. 
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The sum is 15

The value of i is 1

The value of i is 2

The value of i is 3

The value of i is 4

The value of i is 5

The sum is 15

On the hardware being used, the first process executed so rapidly that it was able to complete execution before the second 

process ran at all. Once the first process completed, the operating system switched the processor to the second process, which 

also ran to completion. The entire run took less than a second. The operating system overhead incurred in switching between 

processes and handling system calls, including the call to fork and the calls required to write the output, accounted for less than 

20% of the total time. 

3.5.3 Timeslicing 

In the example program, each process performed a trivial amount of computation as it iterated through a loop five times. 

Therefore, once a process gained control of the CPU, it quickly ran to completion. If we examine concurrent processes that 

perform substantially more computation, an interesting phenomenon occurs: the operating system allocates the available CPU 

power to each one for a short time before moving on to the next. We use the term timeslicing to describe systems that share the 

available CPU among several processes concurrently. For example, if a timeslicing system has only one CPU to allocate and a 

program divides into two processes, one of the processes will execute for a while, then the second will execute for a while, then 

the first will execute again, and so on. If the timeslicing system has many processes, it runs each for a short time before it runs 

the first one again. 

A timeslicing mechanism attempts to allocate the available processing equally among all available processes. If only two 

processes are eligible to execute and the computer has a single processor, each receives approximately 50% of the CPU. If N 

processes are eligible on a computer with a single processor, each receives approximately 1/N of the CPU. Thus, all processes 

appear to proceed at an equal rate, no matter how many processes execute. With many processes executing, the rate is low; with 

few, the rate is high. 

To see the effect of timeslicing, we need an example program in which each process executes longer than the allotted 

timeslice. Extending the concurrent program above to iterate 10,000 times instead of 5 times produces: 

 

#include <stdlib.h>

#include <stdio.h>

int sum;

main() {

int i;

sum = 0;

fork();

for (i=1 ; i <=10000 ; i++) {

printf("The value of i is %d\n", i);

fflush(stdout);

sum += i;
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}

printf ("The total is %d\n", sum);

exit (0)

}

When the resulting concurrent program is executed on the same system as before, it emits 20,002 lines of output. However, 

instead of all output from the first process followed by all output from the second process, output from both processes is mixed 

together. In one run, the first process iterated 74 times before the second process executed at all. Then the second process 

iterated 63 times before the system switched back to the first process. On subsequent timeslices, the processes each received 

enough CPU service to iterate between 60 and 90 times. Of course, the two processes compete with all other processes executing 

on the computer, so the apparent rate of execution varies slightly depending on the mix of programs running. 

3.5.4 Making Processes Diverge 

So far, we have said that fork can be used to create a new process that executes exactly the same code as the original process. 

Creating a truly identical copy of a running program is neither interesting nor useful because it means that both copies perform 

exactly the same computation. In practice, the process created by fork is not absolutely identical to the original process: it differs 

in one small detail. Fork is a function that returns a value to its caller. When the function call returns, the value returned to the 

original process differs from the value returned to the newly created process. In the newly created process, the fork returns zero; 

in the original process, fork returns a small positive integer that identifies the newly created process. Technically, the value 

returned is called a process identifier or process id3. 

Concurrent programs use the value returned by fork to decide how to proceed. In the most common case, the code contains a 

conditional statement that tests to see if the value returned is nonzero: 

 

#include <stdlib.h>

int sum;

main() {

int pid;

sum = 0;

pid = fork();

if (pid != 0) { /* original process */

printf("The original process prints this.\n");

} else { /* newly created process */

printf ("The new process prints this. \n")

}

exit(0);

}

 

In the example code, variable pid records the value returned by the call to fork. Remember that each process has its own copy 

of all variables, and that fork will either return zero (in the newly created process) or nonzero (in the original process). 

Following the call to fork, the if statement checks variable pid to see whether the original or the newly created process is 

                                                        

3 Many programmers abbreviate process id as pid. 
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executing. The two processes each print an identifying message and exit. When the program runs, two messages appear: one 

from the original process and one from the newly created process. To summarize: 

 

The value returned by fork differs in the original and newly created processes; concurrent programs use 
the difference to allow the new process to execute different code than the original process. 

 

3.6 Executing New Code 

UNIX provides a mechanism that allows any process to execute an independent, separately -compiled program. The 

mechanism that UNIX uses is a system call, execve4, that takes three arguments: the name of a file that contains an executable 

object program (i.e., a program that has been compiled), a pointer to a list of string arguments to pass to the program, and a 

pointer to a list of strings that comprise what UNIX calls the environment. 

Execve replaces the code that the currently executing process runs with the code from the new program. The call does not 

affect any other processes. Thus, to create a new process that executes the object code from a file, a process must call fork and 

execve. For example, whenever the user types a command to one of the UNIX command interpreters, the command interpreter 

uses fork to create a new process for the command and execve to execute the code. 

Execve is especially important for servers that handle diverse services. To keep the code for each service separate from the 

code for other services, a programmer can build, write, and compile each service as a separate program. When the server needs 

to handle a particular service, it can use fork and execve to create a process that runs one of the programs. Later chapters discuss 

the idea in more detail, and show examples of how servers use execve. 

3.7 Context Switching And Protocol Software Design 

Although the concurrent processing facilities that operating systems provide make programs more powerful and easier to 

understand, they do have computational cost. To make sure that all processes proceed concurrently, the operating system uses 

timeslicing, switching the CPU (or CPUs) among processes so fast that it appears to a human that the processes execute 

simultaneously. 

When the operating system temporarily stops executing one process and switches to another, a context switch has occurred. 

Switching process context requires use of the CPU, and while the CPU is busy switching, none of the application processes 

receives any service. Thus, we view context switching as overhead needed to support concurrent processing. 

To avoid unnecessary overhead, protocol software should be designed to minimize context switching. In particular, 

programmers must always be careful to ensure that the benefits of introducing concurrency into a server outweigh the cost of 

switching context among the concurrent processes. Later chapters discuss the use of concurrency in server software, present 

nonconcurrent designs as well as concurrent ones, and describe circumstances that justify the use of each. 

3.8 Concurrency And Asynchronous I/O 

In addition to providing support for concurrent use of the CPU, some operating systems allow a single application program to 

initiate and control concurrent input and output operations. In BSD UNIX, the select system call provides a fundamental 

operation around which programmers can build programs that manage concurrent I/O. In principle, select is easy to understand: 

it allows a program to ask the operating system which I/O devices are ready for use. 

As an example, imagine an application program that reads characters from a TCP connection and writes them to the display 

screen. The program might also allow the user to type commands on the keyboard to control how the data is displayed. Because a 

user seldom (or never) types commands, the program cannot wait for input from the keyboard - it must continue to read and 

display text from the TCP connection. However, if the program attempts to read from the TCP connection and no data is 

                                                        

4 Some versions of UNIX use the older name, exec. 
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available, the program will block. The user may type a command while the program is blocked waiting for input on the TCP 

connection. The problem is that the application cannot know whether input will arrive from the keyboard or the TCP connection 

first. To solve the dilemma, a UNIX program calls select. In doing so, it asks the operating system to let it know which source of 

input becomes available first. The call returns as soon as a source is ready, and the program reads from that source. For now, it is 

only important to understand the idea behind select; later chapters present the details and illustrate its use. 

3.9 Summary 

Concurrency is fundamental to TCP/IP applications because it allows users to access services without waiting for one 

another. Concurrency in clients arises easily because multiple users can execute client application software at the same time. 

Concurrency in servers is much more difficult to achieve because server software must be programmed explicitly to handle 

requests concurrently. 

In UNIX, a program creates an additional process using the fork system call. We imagine that the call to fork causes the 

operating system to duplicate the program, causing two copies to execute instead of one. Technically, fork is a function call 

because it returns a value. The only difference between the original process and a process created by fork lies in the value that 

the call returns. In the newly created process, the call returns zero; in the original process, it returns the small, positive integer 

process id of the newly created process. Concurrent programs use the returned value to make new processes execute a different 

part of the program than the original process. A process can call execve at any time to have the process execute code from a 

separately-compiled program. 

Concurrency is not free. When an operating system switches context from one process to another, the system uses the CPU. 

Programmers who introduce concurrency into server designs must be sure that the benefits of a concurrent design outweigh the 

additional overhead introduced by context switching. 

The select call permits a single process to manage concurrent I/O. A process uses select to find out which I/O device becomes 

ready first. 

FOR FURTHER STUDY 

Many texts on operating systems describe concurrent processing. Peterson and Silberschatz [1985] covers the general topic. 

Comer [19841 discusses the implementation of processes, message passing, and process coordination mechanisms. Leffler et. al. 
[1989] describes 4.3 BSD UNIX. 

EXERCISES 

3.1 Run the example programs on your local computer system. Approximately how many iterations of the output loop can a process make 

in a single timeslice? 

 

3.2 Write a concurrent program that starts five processes. Arrange for each process to print a few lines of output and then halt. 

 

3.3 Find out how systems other than UNIX create concurrent processes. 

 

3.4 Read more about the UNIX fork function. What information does the newly created process share with the original process? 

 

3.5 Write a program that uses execve to change the code a process executes. 

 

3.6 Write a program that uses select to read from two terminals (serial lines), and displays the results on a screen with labels that identify 

the source. 
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3.7 Rewrite the program in the previous exercise so it does not use select. Which version is easier to understand? more efficient? easier to 

terminate cleanly?
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4 
Program Interface To Protocols 

 

4.1 Introduction 

Previous chapters describe the client-server model of interaction for communicating programs and discuss the relationship 

between concurrency and communication. This chapter considers general properties of the interface an application program uses 

to communicate in the client-server model. The following chapter illustrates these properties by giving details of a specific 

interface. 

4.2 Loosely Specified Protocol Software Interface 

In most implementations, TCP/IP protocol software resides in the computer's operating system. Thus, whenever an 

application program uses TCP/IP to communicate, it must interact with the operating system to request service. From a 

programmer's point of view, the routines the operating system supplies define the interface between the application and the 

protocol software, the application interface. 

TCP/IP was designed to operate in a multi-vendor environment. To remain compatible with a wide variety of machines, 

TCP/IP designers carefully avoided choosing any vendor's internal data representation. In addition, the TCP/IP standards 

carefully avoid specifying the application interface in terms of features available only on a single vendor's operating system. 

Thus, the interface between TCP/IP and applications that use it has been loosely specified. In other words: 

 

The TCP/IP standards do not specify the details of how application software interfaces with TCP/IP 
protocol software; they only suggest the required functionality, and allow system designers to choose the 
details. 

 

4.2.1 Advantages And Disadvantages 

Using a loose specification for the protocol interface has advantages and disadvantages. On the positive side, it provides 

flexibility and tolerance. It allows designers to implement TCP/IP using operating systems that range from the simplest systems 

available on personal computers to the sophisticated systems used on supercomputers. More important, it means designers can 

use either a procedural or message-passing interface style (whichever style the operating system supports). 

On the negative side, a loose specification means that designers can make the interface details different for each operating 

system. As vendors add new interfaces that differ from existing interfaces, application programming becomes more difficult and 

applications become less portable across machines. Thus, while system designers favor a loose specification, application 

programmers, desire a restricted specification because it means applications can be compiled for new machines without change. 

In practice, only a few TCP/IP interfaces exist. The University of California at Berkeley defined an interface for the Berkeley 

UNIX operating system that has become known as the socket interface, or sockets. AT&T defined an interface for System V 

UNIX known by the acronym TLI1. A few other interfaces have been defined, but none has gained wide acceptance yet. 

4.3 Interface Functionality 

Although TCP/IP does not define an application program interface, the standards do suggest the functionality needed. An 

interface must support the following conceptual operations: 

                                                        

1 TLI stands for Transport Layer Interface. 
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• Allocate local resources for communication 

• Specify local and remote communication endpoints 

• Initiate a connection (client side) 

 

• Wait for an incoming connection (server side) 

• Send or receive data 

• Determine when data arrives 

• Generate urgent data 

• Handle incoming urgent data 

• Terminate a connection gracefully 

• Handle connection termination from the remote site 

• Abort communication 

• Handle error conditions or a connection abort 

• Release local resources when communication finishes 

4.4 Conceptual Interface Specification 

The TCP/IP standards do not leave implementors without any guidance. They specify a conceptual interface for TCP/IP that 

serves as an illustrative example. Because most operating systems use a procedural mechanism to transfer control from an 

application program into the system, the standard defines the conceptual interface as a set of procedures and functions. The 

standard suggests the parameters that each procedure or function requires as well as the semantics of the operation it performs. 

For example, the TCP standard discusses a SEND procedure, and lists the arguments an application needs to supply to send data 

on an existing TCP connection. 

The point of defining conceptual operations is simple: 

 

The conceptual interface defined by the TCP/IP standards does not specify data representations or programming 

details; it merely provides an example of one possible interface that an operating system can offer to application 

programs that use TCP/IP 

 

Thus, the conceptual interface illustrates loosely how applications interact with TCP. Because it does not prescribe exact 

details, operating system designers are free to choose alternative procedure names or parameters as long as they offer equivalent 

functionality. 

4.5 System Calls 

Figure 4.1 illustrates the system call mechanism that most operating systems use to transfer control between an application 

program and the operating system procedures that supply services. To a programmer, system calls look and act like function 

calls. 

As the figure shows, when an application invokes a system call, control passes from the application to the system call 

interface. The interface then transfers control to the operating system. The operating system directs the incoming call to an 

internal procedure that performs the requested operation. Once the internal procedure completes, control returns through the 

system call interface to the application, which then continues to execute. In essence, whenever an application program needs 
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service from the operating system, the process executing the application climbs into the operating system, performs the necessary 

operation, and then climbs back out. As it passes through the system call interface, the process acquires privileges that allow it to 

read or modify data structures in the operating system. The operating system remains protected, however, because each system 

call branches to a procedure that the operating system designers have written. 

 

4.6 Two Basic Approaches To Network Communication 

Operating system designers must choose the exact set of procedures used to access TCP/IP protocols when they install 

protocol software in an operating system. Implementations follow one of two approaches: 

 

• The designer invents entirely new system calls that applications use to access TCP/IP. 

• The designer attempts to use conventional I/O calls to access TCP/IP. 

 

In the first approach, the designer makes a list of all conceptual operations, invents names and parameters for each, and 

implements each as a system call. Because many designers consider it unwise to create new system calls unless absolutely 

necessary, this approach is seldom used. In the second approach, the designer uses conventional I/O primitives but overloads 

them so they work with network protocols as well as conventional I/O devices. Of course, many designers choose a hybrid 

approach that uses basic I/O functions whenever possible, but adds additional functions for those operations that cannot be 

expressed conveniently. 

4.7 The Basic I/O Functions Available In UNIX 

To understand how conventional system calls can be extended to accommodate TCP/IP consider the basic UNIX I/O 

functions. UNIX (and the many operating system variants derived from it) provides a basic set of six system functions used for 

input/output operations on devices or files. The table in Figure 4.2 lists the operations and their conventional meanings. 
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When an application program calls open to initiate input or output, the system returns a small integer called a file descriptor 
that the application uses in further I/O operations. The call to open takes three arguments: the name of a file or device to open, a 

set of bit flags that controls special cases such as whether to create the file if it does not exist, and an access mode that specifies 

read/write protections for newly created files. For example, the code segment: 

int desc;

desc = open("filename", O_RDWR, 0)

 

opens an existing file, filename, with a mode that allows both reading and writing. After obtaining the integer descriptor, 

desc, the application uses it in further I/O operations on the file. For example, the statement: 

read(desc, buffer, 128);

reads 128 bytes of data from the file into array buffer. 

Finally, when an application finishes using a file, it calls close to deallocate the descriptor and release associated resources 

(e.g., internal buffers): 

close(desc);

4.8 Using UNIX I/O With TCP/IP 

When designers added TCP/IP protocols to UNIX, they extended the conventional UNIX I/O facilities. First, they extended 

the set of file descriptors and made it possible for applications to create descriptors used for network communication. Second, 

they extended the read and write system calls so they worked with the new network descriptors as well as with conventional file 

descriptors. Thus, when an application needs to send data across a TCP connection, it creates the appropriate descriptor, and 

then uses write to transfer data. 

However, not all network communication fits easily into UNIX's open- read-writeclose paradigm. An application must 

specify the local and remote protocol ports and the remote IP address it will use, whether it will use TCP or UDP, and whether it 

will initiate transfer or wait for an incoming connection (i.e., whether it wants to behave as a client or server). If it is a server, it 

must specify how many incoming connection requests the operating system should enqueue before rejecting them. Furthermore, 
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if an application chooses to use UDP, it must be able to transfer UDP datagrams, not merely a stream of bytes. The designers of 

Berkeley UNIX added new system calls to UNIX to accommodate these special cases. The next chapter shows the details of the 

design. 

4.9 Summary 

Because TCP/IP is designed for a multi-vendor environment, the protocol standards loosely specify the interface that 

application programs use, allowing operating system designers freedom in choosing how to implement it. The standards do 

discuss a conceptual interface, but it is intended only as an illustrative example. Although the standards present the conceptual 

interface as a set of procedures, designers are free to choose different procedures or to use an entirely different style of interaction 

(e.g., message passing). 

Operating systems often supply services through a mechanism known as the system call interface. When adding support for 

TCP/IP, designers attempt to minimize the number of new system calls by extending existing system calls where possible. 

However, because network communication requires operations that do not fit easily into conventional I/O procedures, most 

interfaces to TCP/IP require a few new system calls. 

FOR FURTHER STUDY 

Section 2 of the UNIX Programmer's Manual describes each of the socket calls in detail; section 4P describes protocols and 

network device interfaces in more detail. [AT&T 1989] defines AT&T's TLI interface, an alternative to sockets used in System 

V UNIX. 

EXERCISES 

4.1 Examine a message-passing operating system. How would you extend the application program interface to accommodate network 

communication? 

 

4.2 Compare the socket interface from Berkeley UNIX with AT&T's TLI. What are the major differences? How are the two similar? What 

reasons could designers have for choosing one design over the other? 

 

4.3 Some hardware architectures limit the number of possible system calls to a small number (e.g., 64 or 128). How many system calls 

have already been assigned in your local operating system? 

 

4.4 Think about the hardware limit on system calls discussed in the previous exercise. How can a system designer add additional system 

calls without changing the hardware? 

 

4.5 Find out how recent versions of the Kom shell use /dev/tcp to allow UNIX shell scripts to communicate with TCP. Write an example 

script. 
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5 
The Socket Interface 

 

5.1 Introduction 

The previous chapter describes the interface between application programs and the TCP/IP software, and shows how most 

systems use the system call mechanism to transfer control to the TCP/IP software in an operating system. It also reviews the six 

basic I/O functions that UNIX supplies: open, close, read, write, lseek, and ioctl.  This chapter describes the details of a 

specific set of UNIX system calls for TCP/IP and discusses how they use the UNIX I/O paradigm. It covers concepts in general, 

and gives the intended use of each call. Later chapters show how clients and servers use these calls, and provide examples that 

illustrate many of the details. 

5.2 Berkeley Sockets 

In the early 1980s, the Advanced Research Projects Agency (ARPA) funded a group at the University of California at 

Berkeley to transport TCP/IP software to the UNIX operating system and to make the resulting software available to other sites. 

As part of the project, the designers created an interface that applications use to communicate. They decided to use the existing 

UNIX system calls whenever possible and to add new system calls to support TCP/IP functions that did not fit easily into the 

existing set of functions. The result became known as the socket interface1, and the system is known as Berkeley UNIX or 

BSD UNIX. (TCP first appeared in release 4.1 of the Berkeley Software Distribution; the socket functions that this text 

describes are from release 4.4.) 

Because many computer vendors, especially workstation manufacturers like Sun Microsystems Incorporated, Tektronix 

Incorporated, and Digital Equipment Corporation, adopted Berkeley UNIX, the socket interface has become available on many 

machines. Consequently, the socket interface has become so widely accepted that it ranks as a de facto standard. 

5.3 Specifying A Protocol Interface 

When designers consider how to add functions to an operating system that provide application programs access to TCP/IP 

protocol software, they must choose names for the functions and must specify the parameters that each function accepts. In so 

doing, they decide the scope of services that the functions supply and the style in which applications use them. Designers must 

also consider whether to make the interface specific to the TCP/IP protocols or whether to plan for additional protocols. Thus, 

the designers must choose one of two broad approaches: 

• Define functions specifically to support TCP/IP communication. 

• Define functions that support network communication in general, and use parameters to make TCP/IP 

communication a special case. 

Differences between the two approaches are easiest to understand by their impact on the names of system functions and the 

parameters that the functions require. For example, in the first approach, a designer might choose to have a system function 

named maketcpconnection, while in the second, a designer might choose to create a general function makeconnection and 

use a parameter to specify the TCP protocol. Because the designers at Berkeley wanted to accommodate multiple sets of com-

munication protocols, they used the second approach. In fact, throughout the design, they provided for generality far beyond 

TCP/IP. They allowed for multiple families of protocols, with all TCP/IP protocols represented as a single family (family 

PF_INET). They also decided to have applications specify operations using a type of service required instead of specifying the 

protocol name. Thus, instead of specifying that it wants a TCP connection, an application requests the stream transfer type of 

service using the Internet family of protocols. We can summarize: 

                                                        

1 The socket interface is sometimes called the Berkeley socket interface. 
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The Berkeley socket interface provides generalized functions that support network communication using 
many possible protocols. Socket calls refer to all TCP/IP protocols as a single protocol family. The calls 
allow the programmer to specify the type of service required rather than the name of a specific protocol. 

 

The overall design of sockets and the generality they provide have been debated since their inception. Some computer 

scientists argue that generality is unnecessary and merely makes application programs difficult to read. Others argue that having 

programmers specify the type of service instead of the specific protocol makes it easier to program because it frees the 

programmer from understanding the details of each protocol family. Finally, some commercial vendors of TCP/IP software have 

argued in favor of alternative interfaces because sockets cannot be added to an operating system unless the customer has the 

source code, which usually requires a special license agreement and additional expense. 

5.4 The Socket Abstraction 

5.4.1 Socket Descriptors And File Descriptors 

In UNIX, an application that needs to perform I/O calls the open function to create a file descriptor that it uses to access the 

file. As Figure 5.1 shows, the operating system implements file descriptors as an array of pointers to internal data structures. The 

system maintains a separate file descriptor table for each process. When a process opens a file, the system places a pointer to the 

internal data structures for that file in the process' file descriptor table and returns the table index to the caller. The application 

program only needs to remember the descriptor and to use it in subsequent calls that request operations on the file. The operating 

system uses the descriptor as an index into the process' descriptor table, and follows the pointer to the data structures that hold 

all information about the file. 

 

The socket interface adds a new abstraction for network communication, the socket. Like files, each active socket is 

identified by a small integer called its socket descriptor. UNIX allocates socket descriptors in the same descriptor table as 

file descriptors. Thus, an application cannot have both a file descriptor and a socket descriptor with the same value. 

BSD UNIX contains a separate system function, socket, that applications call to create a socket; an application only uses 

open to create file descriptors. 

The general idea underlying sockets is that a single system call is sufficient to create any socket. Once the socket has been 

created, an application must make additional system calls to specify the details of its exact use. The paradigm will become clear 

after we examine the data structures the system maintains. 
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5.4.2 System Data Structures For Sockets 

The easiest way to understand the socket abstraction is to envision the data structures in the operating system. When an 

application calls socket, the operating system allocates a new data structure to hold the information needed for communication, 

and fills in a new descriptor table entry to contain a pointer to the data structure. For example, Figure 5.2 illustrates what 

happens to the descriptor table of Figure 5.1 after a call to socket2.  In the example, arguments to the socket call have specified 

protocol family PF_INET and type of service SOCK_STREAM. 

 

Although the internal data structure for a socket contains many fields, the system leaves most of them unfilled when it creates 

the socket. As we will see, the application that created the socket must make additional system calls to fill in information in the 

socket data structure before the socket can be used. 

5.4.3 Using Sockets 

Once a socket has been created, it can be used to wait for an incoming connection or to initiate a connection. A socket used 

by a server to wait for an incoming connection is called a passive socket, while a socket used by a client to initiate a connection 

is called an active socket. The only difference between active and passive sockets lies in how applications use them; the sockets 

are created the same way initially. 

5.5 Specifying An Endpoint Address 

When a socket is created, it does not contain detailed information about how it will be used. In particular, the socket does not 

contain information about the protocol port numbers or IP addresses of either the local machine or the remote machine. Before 

an application uses a socket, it must specify one or both of these addresses. 

TCP/IP protocols define a communication endpoint to consist of an IP address and a protocol port number. Other protocol 

families define their endpoint addresses in other ways. Because the socket abstraction accommodates multiple families of 

protocols, it does not specify how to define endpoint addresses nor does it define a particular protocol address format. Instead, it 

allows each protocol family to specify endpoints however it likes. 

To allow protocol families the freedom to choose representations for their addresses the socket abstraction defines an 

address family for each type of address. A protocol family can use one or more address families to define address 

representations. The TCP/IP protocols all use a single address representation, with the address family denoted by the symbolic 

constant AF_INET. 

                                                        

2 UNIX data structures are more complex than shown in Figure 5.1; the diagram illustrates the concept, not the details. 
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In practice, much confusion arises between the TCP/IP protocol family, denoted PF_INET, and the address family it uses, 

denoted AF_INET. The chief problem is that both symbolic constants have the same numeric value (2), so programs that 

inadvertent ly use one in place of the other operate correctly. Even the Berkeley UNIX source code contains examples of misuse. 

Programmers should observe the distinction, however, because it helps clarify the meaning of variables and makes programs 

more portable. 

5.6 A Generic Address Structure 

Some software manipulates protocol addresses without knowing the details of how every protocol family defines its address 

representation. For example, it may be necessary to write a procedure that accepts an arbitrary protocol endpoint specification as 

an argument and chooses one of several possible actions depending on the address type. To accommodate such programs, the 

socket system defines a generalized format that all endpoint addresses use. The generalized format consists of a pair: 

(address family, endpoint address in that family) 

where the address family field contains a constant that denotes one of the preassigned address types, and the endpoint address 

field contains an endpoint address using the standard representation for the specified address type. 

In practice, the socket software provides declarations of predefined C structures for address endpoints. Application programs 

use the predefined structures when they need to declare variables that store endpoint addresses or when they need to use an 

overlay to locate fields in a structure. The most general structure is known as a sockaddr structure. It contains a 2-byte address 

family identifier and a 14-byte array to hold an address3: 

struct sockaddr { /* struct to hold an address */

u_char sa_len; /* total length */

u_short sa_family; /* type of address */

char sa_data[14]; /* value of address */

Unfortunately, not all address families define endpoints that fit into the sockaddr structure. For example, BSD UNIX 

defines the AF_UNIX address family to specify what UNIX programmers think of as a named pipe. Endpoint addresses in the 

AF UNIX family consist of UNIX path names that can be much longer than 14 bytes. Therefore, application programs should 

not use sockaddr_in variable declarations because a variable declared to be of type sockaddr is not large enough to hold all 

possible endpoint addresses. 

Confusion often arises in practice because the sockaddr structure accommodates addresses in the AF_INET family. Thus, 

TCP/IP software works correctly even if the programmer declares variables to be of type sockaddr. However, to keep programs 

portable and maintainable, TCP/IP code should not use the sockaddr structure in declarations. Instead, sockaddr should be 

used only as an overlay, and code should reference only the sa_family field in it. 

Each protocol family that uses sockets defines the exact representation of its endpoint addresses, and the socket software 

provides corresponding structure declarations. Each TCP/IP endpoint address consists of a 2-byte field that identifies the address 

type (it must contain AF_INET), a 2-byte port number field, a 4-byte IP address field, and an 8-byte field that remains unused. 

Predefined structure sockaddr_in specifies the format: 

struct sockaddr_in { /* struct to hold an address */

u_char sin_len; /* total length */

u_short sin_family; /* type of address */

u_short sin_port; /* protocol port number */

                                                        

3 This text describes the structure as defined in release 4.4 of the Berkeley software; older versions of the sockaddr structure do not include the sa len field. 
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struct in_addr sin_addr; /* IP address (declared to be */

/ * u long on some systems) * /

char sin_zero[8]; / * unused (set to zero) * /

};

An application that uses TCP/IP protocols exclusively can use structure sockaddr_in exclusively; it never needs to use the 

sockaddr structure4. Thus, 

 

When representing a TCP/IP communication endpoint, an application program uses structure 
sockaddr_in, which contains both an IP address and a protocol port number. Programmers must 
be careful when writing programs that use a mixture of protocols because some non-TCP/IP 
endpoint addresses require a larger structure. 

 

5.7 Major System Calls Used With Sockets 

Socket calls can be separated into two groups: primary calls that provide access to the underlying functionality and utility 

routines that help the programmer. This section describes the calls that provide the primary functionality that clients and servers 

need. 

The details of socket system calls, their parameters, and their semantics can seem overwhelming. Much of the complexity 

arises because sockets have parameters that allow programs to use them in many ways. A socket can be used by a client or by a 

server, for stream transfer (TCP) or datagram (UDP) communication, with a specific remote endpoint address (usually needed by 

a client) or with an unspecified remote endpoint address (usually needed by a server). 

To help understand sockets, we will begin by examining the primary socket calls and describing how a straightforward client 

and server use them to communicate with TCP. Later chapters each discuss one way to use sockets, and illustrate many of the 

details and subtleties not covered here. 

5.7.1 The Socket Call 

An application calls socket to create a new socket that can be used for network communication. The call returns a descriptor 

for the newly created socket. Arguments to the call specify the protocol family that the application will use (e.g., PF_INET for 

TCP/IP) and the protocol or type of service it needs (i.e., stream or datagram). For a socket that uses the Internet protocol family, 

the protocol or type of service argument determines whether the socket will use TCP or UDP. 

5.7.2 The Connect Call 

After creating a socket, a client calls connect to establish an active connection to a remote server. An argument to connect 
allows the client to specify the remote endpoint, which includes the remote machine's IP address and protocol port number. Once 

a connection has been made, a client can transfer data across it. 

5.7.3 The Write Call 

Both clients and servers use write to send data across a TCP connection. Clients usually use write to send requests, while 

servers use it to send replies. A call to write requires three arguments. The application passes the descriptor of a socket to which 

the data should be sent, the address of the data to be sent, and the length of the data. Usually, write copies outgoing data into 

buffers in the operating system kernel, and allows the application to continue execution while it transmits the data across the 

                                                        

4 Structure sockaddr is used to cast (i.e., change the type of) pointers or the results of system functions to make programs pass the type checking in lint. 
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network. If the system buffers become full, the call to write may block temporarily until TCP can send data across the network 

and make space in the buffer for new data. 

5.7.4 The Read Call 

Both clients and servers use read to receive data from a TCP connection. Usually, after a connection has been established, 

the server uses read to receive a request that the client sends by calling write. After sending its request, the client uses read to 

receive a reply. 

To read from a connection, an application calls read with three arguments. The first specifies the socket descriptor to use, 

the second specifies the address of a buffer, and the third specifies the length of the buffer. Read extracts data bytes that have ar 

rived at that socket, and copies them to the user's buffer area. If no data has arrived, the call to read blocks until it does. If more 

data has arrived than fits into the buffer, read only extracts enough to fill the buffer. If less data has arrived than fits into the 

buffer, read extracts all the data and returns the number of bytes it found. 

Clients and servers can also use read to receive messages from sockets that use UDP. As with the connection-oriented case, 

the caller supplies three arguments that identify a socket descriptor, the address of a buffer into which the data should be placed, 

and the size of the buffer. Each call to read extracts one incoming UDP message (i.e., one user datagram). If the buffer cannot 

hold the entire message, read fills the buffer and discards the remainder. 

5.7.5 The Close Call 

Once a client or server finishes using a socket, it calls close to deallocate it. If only one process is using the socket, close 
immediately terminates the connection and deallocates the socket. If several processes share a socket, close decrements a 

reference count and deallocates the socket when the reference count reaches zero. 

5.7.6 The Bind Call 

When a socket is created, it does not have any notion of endpoint addresses (neither the local nor remote addresses are 

assigned). An application calls bind to specify the local endpoint address for a socket. The call takes arguments that specify a 

socket descriptor and an endpoint address. For TCP/IP protocols, the endpoint address uses the sockaddr_in structure, which 

includes both an IP address and a protocol port number. Primarily, servers use bind to specify the well-known port at which they 

will await connections. 

5.7.7 The Listen Call 

When a socket is created, the socket is neither active (i.e., ready for use by a client) nor passive (i.e., ready for use by a 

server) until the application takes further action. Connection-oriented servers call listen to place a socket in passive mode and 

make it ready to accept incoming connections. 

Most servers consist of an infinite loop that accepts the next incoming connection, handles it, and then returns to accept the 

next connection. Even if handling a given connection takes only a few milliseconds, it may happen that a new connection 

request arrives during the time the server is busy handling an existing request. To ensure that no connection request is lost, a 

server must pass listen an argument that tells the operating system to enqueue connection requests for a socket. Thus, one 

argument to the listen call specifies a socket to be placed in passive mode, while the other specifies the size of the queue to be 

used for that socket. 

5.7.8 The Accept Call 

For TCP sockets, after a server calls socket to create a socket, bind to specify a local endpoint address, and listen to place it 

in passive mode, the server calls accept to extract the next incoming connection request. An argument to accept specifies the 

socket from which a connection should be accepted. 

Accept creates a new socket for each new connection request, and returns the descriptor of the new socket to its caller. The 

server uses the new socket only for the new connection; it uses the original socket to accept additional connection requests. Once 
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it has accepted a connection, the server can transfer data on the new socket. After it finishes using the new socket, the server 

closes it. 

5.7.9 Summary Of Socket Calls Used With TCP 

The table in Figure 5.3 provides a brief summary of the system functions related to sockets. 

 

5.8 Utility Routines For Integer Conversion 

TCP/IP specifies a standard representation for binary integers used in protocol headers. The representation, known as 

network byte order, represents integers with the most significant byte first. 

Although the protocol software hides most values used in headers from application programs, a programmer must be aware 

of the standard because some socket routines require arguments to be stored in network byte order. For example, the protocol 

port field of a sockaddr_in structure uses network byte order. 

The socket routines include several functions that convert between network byte order and the local host's byte order. 

Programs should always call the conversion routines even if the local machine's byte order is the same as the network byte order 

because doing so makes the source code portable to an arbitrary architecture. 

The conversion routines are divided into short and long sets to operate on 16-bit integers and 32-bit integers. Functions 

htons (host to network short) and ntohs (network to host short) convert a short integer from the host's native byte order 

to the network by to order, and vice versa. Similarly, htonl and ntohl convert long integers from the host's native byte order to 

network byte order and vice versa. To summarize: 
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Software that uses TCP/IP calls functions htons, ntohs, htonl and ntohl to convert binary integers 
between the host's native byte order and network standard byte order. Doing so makes the 
source code portable to any machine, regardless of its native byte order. 

 

5.9 Using Socket Calls In A Program 

Figure 5.4 illustrates a sequence of calls made by a client and a server using TCP. 

 

The client creates a socket, calls connect to connect to the server, and then interacts using write to send requests and read 
to receive replies. When it finishes using the connection, it calls close. A server uses bind to specify the local (well-known) 

protocol port it will use, calls listen to set the length of the connection queue, and then enters a loop. Inside the loop, the server 

calls accept to wait until the next connection request arrives, uses read and write to interact with the client, and finally uses 

close to terminate the connection. The server then returns to the accept call, where it waits for the next connection. 

5.10 Symbolic Constants For Socket Call Parameters 

In addition to the system functions that implement sockets, BSD UNIX provides a set of predefined symbolic constants and 

data structure declarations that programs use to declare data and to specify arguments. For example, when specifying whether to 

use datagram service or stream service, an application program uses symbolic constants SOCK DGRAM or SOCK STREAM. 
To do so, the program must incorporate the appropriate definitions into each program with the C preprocessor include 
statement. Usually, include statements appear at the beginning of a source file; they must appear before any use of the constants 

they define. The include statements needed for sockets usually have the form: 

#include <sys/types.h>

#include <sys/socket.h>

We will assume throughout the remainder of this text that programs always begin with these statements, even if they are not 

shown explicitly in the examples. To summarize: 
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UNIX supplies predefined symbolic constants and data structure declarations used with the socket system 
calls. Programs that reference these constants must begin with C preprocessor include statements that 
reference the files in which the definitions appear. 

 

5.11 Summary 

BSD UNIX introduced the socket abstraction as a mechanism that allows application programs to interface with protocol 

software in the operating system. Because so many other vendors have adopted sockets, they have become a de facto standard. 

A program calls socket to create a socket and obtain a descriptor for it. Arguments to the socket call specify the protocol 

family to be used and the type of service required. All TCP/IP protocols are part of the Internet family, specified with symbolic 

constant PF_INET. The system creates an internal data structure for the socket, fills in the protocol family, and uses the type of 

service argument to select a specific protocol (usually either UDP or TCP). 

Additional system calls allow the application to specify a local endpoint address(bind), to force the socket into passive 

mode for use by a server (listen), or to force the socket into active mode for use by a client (connect). Servers can 

make further calls to obtain incoming connection requests (accept), and both clients and servers can send or 

receive information (read and write). Finally, both clients and servers can deallocate a socket once they have 

finished using it (close). 

The socket structure allows each protocol family to define one or more address representations. All TCP/IP 

protocols use the Internet address family, AF_INET, which specifies that an endpoint address contains both an IP 

address and a protocol port number. When an application specifies a communication endpoint to a socket function, 

it uses predefined structure sockaddr_in. If a client specifies that it needs an arbitrary, unused local protocol port, 

the TCP/IP software will select one. 

Before an application program written in C can use the predefined structures and symbolic constants associated 

with sockets, it must include several files that define them. In particular, we assume that all source programs begin 

with statements that include files <sys/types.h> and <sys/socket.h>. 

FOR FURTHER STUDY 

Leffler et. al. [1989] describes the Berkeley UNIX system in detail, and describes the internal data structures 

UNIX uses for sockets. Presotto and Ritchie [June 1990] describes an interface for TCP/IP protocols using the 

UNIX file system space. The UNIX Programmer's Manual contains specifications for the socket functions, 

including an exact description of arguments and return codes. The section entitled The IPC Tutorial is worth 

reading. Much of the information on socket calls can also be found in Appendix A. 

EXERCISES 

5.1 Look at the include file for sockets (usually /usr/include/sys/socket.h). What socket types are allowed? Which socket types do not 

makes sense for TCP/IP protocols? 

5.2 If your system has a clock with at least microsecond accuracy, measure how long it takes to execute each of the socket system calls. 

Why do some calls require orders of magnitude more time than others? 

5.3 Read the BSD UNIX manual pages for connect carefully. What network traffic is generated if one calls connect on a socket of type 

SOCK DGRAM? 

5.4 Arrange to monitor your local network while an application executes connect for the first time on a socket of type SOCK STREAM. 
How many packets do you see?
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6 
Algorithms And Issues In Client Software Design 

 

6.1 Introduction 

Previous chapters consider the socket abstraction that applications use to interface with TCP/IP software, and review the 

system calls associated with it. This chapter discusses the basic algorithms underlying client software. It shows how applications 

become clients by initiating communication, how they use TCP or UDP protocols to contact a server, and how they use socket 

calls to interact with those protocols. The next chapter continues the discussion, and shows complete client programs that imple-

ment the ideas discussed here. 

6.2 Learning Algorithms Instead Of Details 

Because TCP/IP provides rich functionality that allows programs to communicate in a variety of ways, an application that 

uses TCP/IP must specify many details about the desired communication. For example, the application must specify whether it 

wishes to act as a client or a server, the endpoint address (or addresses) it will use, whether it will communicate with a 

connectionless or connection-oriented protocol, how it will enforce authorization and protection rules, and details such as the 

size of the buffers it will need. 

So far, we have examined the set of operations available to an application without discussing how applications should use 

them. Unfortunately, knowing the low-level details of all possible system calls and their exact parameters does not provide 

programmers with an understanding of how to build well-designed, distributed programs. In fact, while a general understanding 

of the system calls used for network communication is important, few programmers remember all the details. Instead, they learn 

and remember the possible ways in which programs can interact across a network, and they understand the trade-offs of each 

possible design. In essence, programmers know enough about the algorithms underlying distributed computing to make design 

decisions and to choose among alternative algorithms quickly. They then consult a programming manual to find the details 

needed to write a program that implements a particular algorithm on a particular system. The point is that if the programmer 

knows what a program should do, finding out how to do it is straightforward. 

 

Although programmers need to understand the conceptual capabilities of the protocol interface, they 
should concentrate on learning about ways to structure communicating programs instead of memorizing 
the details of a particular interface. 

 

6.3 Client Architecture 

Applications that act as clients are conceptually simpler than applications that act as servers for several reasons. First, most 

client software does not explicitly handle concurrent interactions with multiple servers. Second, most client software executes as 

a conventional application program. Unlike server software, client software does not usually require special privilege because 

it does not usually access privileged protocol ports. Third, most client software does not need to enforce protections. Instead, 

client programs can rely on the operating system to enforce protections automatically. In fact, designing and implementing client 

software is so straightforward that experienced application programmers can learn to write basic client applications quickly. The 

next sections discuss client software in general; later sections will focus on the differences between clients that use TCP and 

those that use UDP. 

6.4 Identifying The Location Of A Server 
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Client software can use one of several methods to find a server's IP address and protocol port number. A client can: 

• have the server's domain name or IP address specified as a constant when the program is compiled, 

• require the user to identify the server when invoking the program, 

• obtain information about the server from stable storage (e.g., from a file on a local disk), or 

• use a separate protocol to find a server (e.g., multicast or broadcast a message to which all servers respond). 

Specifying the server's address as a constant makes the client software faster and less dependent on a particular local 

computing environment. However, it also means that the client must be recompiled if the server is moved. More important, it 

means that the client cannot be used with an alternative server, even temporarily for testing. As a compromise, some clients fix a 

machine name instead of an IP address. Fixing the name instead of an address delays the binding until run-time. It allows a site 

to choose a generic name for the server and add an alias to the domain name system for that name. Using aliases permits a site 

manager to change the location of a server without changing client software. To move the server, the manager needs to change 

only the alias. For example, it is possible to add an alias for mailhost in the local domain and to arrange for all clients to look 

up the string "mailhost" instead of a specific machine. Because all clients reference the generic name instead of a specific 

machine, the system manager can change the location of the mail host without recompiling client software. 

Storing the server's address in a file makes the client more flexible, but it means that the client program cannot execute 

unless the file is available. Thus, the client software cannot be transported to another machine easily. 

While using a broadcast protocol to find servers works in a small, local environment, it does not scale well to large internets. 

Furthermore, use of a dynamic search mechanism introduces additional complexity for both clients and servers, and adds addi-

tional broadcast traffic to the network. 

To avoid unnecessary complexity and dependence on the computing environment, most clients solve the problem of server 

specification in a simple manner: they require the user to supply an argument that identifies the server when invoking the client 

program. Building client software to accept the server address as an argument makes the client software general and eliminates 

dependency on the computing environment. 

 

Allowing the user to specify a server address when invoking client software makes the client 
program more general and makes it possible to change server locations. 

 

An important point to note is that using an argument to specify the server's address results in the most flexibility. A program 

that accepts an address argument can be combined with other programs that extract the server address from disk, find the 

address using a remote nameserver, or search for it with a broadcast protocol. Thus, 

 

Building client software that accepts a server address as an argument makes it easy to build extended 
versions of the software that use other ways to find the server address (e.g., read the address from a file on 
disk). 

 

Some services require an explicit server, while others can use any available server. For example, when a user invokes a 

remote login client, the user has a specific target machine in mind; logging into another machine usually does not make sense. 

However, if the user merely wants to find the current time of day, the user does not care which server responds. To accommodate 

such services, the designer can modify any of the server look up methods discussed above so they supply a set of server names 

instead of a single name. Clients must also be changed so they try each server in a set until they find one that responds. 
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6.5 Parsing An Address Argument 

Usually, a user can specify arguments on the command line when invoking a client program. In most systems, each argument 

passed to a client program consists of a character string. The client uses an argument's syntax to interpret its meaning. For exam 

ple, most client software allows the user to supply either the domain name of the machine on which the server operates: 

merlin.cd.purdue.edu 

or an IP address in dotted decimal notation: 

128.10.2.3 

To determine whether the user has specified a name or an address, the client scans the argument to see if it contains 

alphabetic characters. If so, it must be a name. If it contains only digits and decimal points, the client assumes it to be a dotted 

decimal address and parses it accordingly. 

Of course, client programs sometimes need additional information beyond the server's machine name or IP address. In 

particular, fully parameterized client software allows a user to specify a protocol port as well as a machine. It is possible to use 

an additional argument or to encode such information in a single string. For example, to specify the protocol port associated with 

the smtp service on machine with name merlin.cs.purdue.edu, the client could accept two arguments: 

merlin.cs.purdue.edu smtp 

or could combine both the machine name and protocol port into a single argument: 

merlin. cs. purdue. edu: smtp 

Although each client can choose the details of its argument syntax independently, having many clients with their own syntax 

can be confusing. From the user's point of view, consistency is always important. Thus, programmers are advised to follow what-

ever conventions their local system uses for client software. For example, because most existing UNIX software uses separate 

arguments to specify the server's machine and protocol port, new client software written for UNIX should use two arguments 

instead of one. 

6.6 Looking Up A Domain Name 

A client must specify the address of a server using structure sockaddr_in. Doing ;o means converting an address in dotted 

decimal notation (or a domain name in text form) into a 32-bit IP address represented in binary. Converting from dotted decimal 

notation to binary is trivial. Converting from a domain name, however, requires considerably more effort. The socket interface in 

BSD UNIX includes library routines, inet addr and gethostbyname, that perform the conversions. Inet addr takes an 

ASCII string that contains a dotted decimal address and returns the equivalent IP address in binary. Gethostbyname takes an 

ASCII string that contains the domain name for a machine. It returns the address of a hostent structure that contains, among 

other things, the host's IP address in binary. The hostent structure is declared in include file netdb.h: 

struct hostent {

char *h_name; /* official host name */

char **h_aliases; /* other aliases */

int h_addrtype; /* address type */

int h_length; /* address length */

char **h_addr_list; /* list of addresses */

};

#define h_addr h_addr_list[0]
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Fields that contain names and addresses must be lists because hosts that have multiple interfaces also have multiple names 

and addresses. For compatibility with earlier versions, the file also defines the identifier h addr to refer to the first location in 

the host address list. Thus, a program can use h addr as if it were a field of the structure. 

Consider a simple example of name conversion. Suppose a client has been passed the domain name merlin.cs.purdue.edu in 

string form and needs to obtain the IP address. The client can call gethostbyname as in: 

struct hostent *hptr;

char *examplenam = ”merlin.cs.purdue.edu";

if ( hptr = gethostbyname( examplenam ) ) {

/* IP address is now in hptr->h_addr */

} else {

/* error in name - handle it */

}

If the call is successful, gethostbyname returns a pointer to a valid hostent structure. If the name cannot be mapped into 

an IP address, the call returns zero. Thus, the client examines the value that gethostbyname returns to determine if an error 

occurred. 

6.7 Looking Up A Well-Known Port By Name 

Most client programs must look up the protocol port for the specific service they wish to invoke. For example, a client of an 

SMTP mail server needs to look up the well-known port assigned to SMTP. To do so, the client invokes library function 

getservbyname, which takes two arguments: a string that specifies the desired service and a string that specifies the protocol 

being used. It returns a pointer to a structure of type servent, also defined in include file netdb.h: 

struct servent {

char *s_name; /* official service name */

char **s_aliases; /* other aliases */

int sort; /* port for this service */

char *s_proto; /* protocol to use */

If a TCP client needs to look up the official protocol port number for SMTP, it calls getservbyname, as in the following 

example: 

struct servent *sptr;

if (sptr = getservbyname( "smtp", ”tcp" )) {

/* port number is now in sptr->s_port */

} else {

/* error occurred - handle it */

}
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6.8 Port Numbers And Network Byte Order 

Function getservbyname returns the protocol port for the service in network byte order. Chapter 5 explains the concept of 

network byte order, and describes library routines that convert from network byte order to the byte order used on the local 

machine. It is sufficient to understand that getservbyname returns the port value in exactly the form needed for use in the 

sockaddr_in structure, but the representation may not agree with the local machine's usual representation. Thus, if a program 

prints out the value that getservbyname returns without converting to local byte order, it may appear to be incorrect. 

6.9 Looking Up A Protocol By Name 

The socket interface provides a mechanism that allows a client or server to map a protocol name to the integer constant 

assigned to that protocol. Library function getprotobyname performs the look up. A call passes the protocol name in a string 

argu ment, and getprotobyname returns the address of a structure of type protoent. If getprotobyname cannot access the 

database or if the specified name does not exist, it returns zero. The database of protocol names allows a site to define aliases for 

each name. The protoent structure has a field for the official protocol name as well as a field that points to the list of aliases. 

The C include file netdb. h contains the structure declaration: 

struct protoent {

char *p_name; / * official protocol name * /

char **p_aliases; /* list of aliases allowed */

int p_proto; /* official protocol number */

};

If a client needs to look up the official protocol number for UDP, it calls getprotobyname, as in the following example: 

struct protoent *pptr;

if (pptr = getprotobyname ( "udp" )) {

/* official protocol number is now in pptr->p _proto */

} else {

/* error occurred - handle it */

}

6.10 The TCP Client Algorithm 

Building client software is usually easier than building server software. Because TCP handles all reliability and flow control 

problems, building a client that uses TCP is the most straightforward of all network programming tasks. A TCP client follows Al 

gorithm 6.1 to form a connection to a server and communicate with it. The sections following the algorithm discuss each of its 

steps in more detail. 
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6.11 Allocating A Socket 

Previous sections have already discussed the methods used to find the server's IP address and the socket function used to 

allocate a communication socket. Clients that use TCP must specify protocol family PF INET and service SOCK STREAM. A 
pro gram begins with include statements that reference files which contain the definitions of symbolic constants used in the call 

and a declaration of the variable used to hold the socket descriptor. If more than one protocol in the family, specified by the first 

argument, offers the service requested by the second argument, the third argument to the socket call identifies a particular 

protocol. In the case of the Internet protocol family, only TCP offers the SOCK STREAM service. Thus, the third argument is 

irrelevant; zero should be used. 

#include <sys/types.h>

#include <sys/socket.h>

int s; /* socket descriptor */

s = socket(PF_INET, SOCK_STREAM, 0);

6.12 Choosing A Local Protocol Port Number 

An application needs to specify remote and local endpoint addresses for a socket before it can be used in communication. A 

server operates at a well-known protocol port address, which all clients must know. However, a TCP client does not operate on a 

preassigned port. Instead, it must select a local protocol port to use for its endpoint address. In general, the client does not care 

which port it uses as long as: (1) the port does not conflict with the ports that other processes on the machine are already using 

and (2) the port has not been assigned to a well-known service. 

Of course, when a client needs a local protocol port, it could choose an arbitrary port at random until it finds one that meets 

the criteria given above. However, the socket interface makes choosing a client port much simpler because it provides a way that 

the client can allow TCP to choose a local port automatically. The choice of a local port that meets the criteria listed above 

happens as a side-effect of the connect call. 

 6.13 A Fundamental Problem In Choosing A Local IP Address 

When forming a connection endpoint, a client must choose a local IP address as well as a local protocol port number. For a 

host that attaches to one network, the choice of a local IP address is trivial. However, because routers or multi-homed hosts have 

multiple IP addresses, making the choice can be difficult. 
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In general, the difficulty in choosing an IP address arises because the correct choice depends on routing and applications 

seldom have access to routing information. To understand why, imagine a computer with multiple network interfaces and, 

therefore, multiple IP addresses. Before an application can use TCP, it must have an endpoint address for the connection. When 

TCP communicates with a foreign destination, it encapsulates each TCP segment in an IP datagram and passes the datagram to 

the IP software. IP uses the remote destination address and its routing table to select a nexthop address and a network interface 

that it can use to reach the next hop. 

Herein lies the problem: the IP source address in an outgoing datagram should match the IP address of the network interface 

over which IP routes the datagram. However, if an application chooses one of the machine's IP addresses at random, it might 

select an address that does not match that of the interface over which IP routes the traffic. 

In practice, a client may appear to work even if the programmer chooses an incorrect address because packets may travel 

back to the client by a different route than they travel to the server. However, using an incorrect address violates the 

specification, makes network management difficult and confusing, and makes the program less reliable. 

To solve the problem, the socket calls make it possible for an application to leave the local IP address field unfilled and to 

allow TCP/IP software to choose a local IP address automatically at the time the client connects to a server. 

 

Because choosing the correct local IP address requires the application to interact with IP routing 
software, TCP client software usually leaves the local endpoint address unfilled, and allows TCP/IP 
software to select the correct local IP address and an unused local protocol port number automatically. 

 

6.14 Connecting A TCP Socket To A Server 

The connect system call allows a TCP client to initiate a connection. In terms of the underlying protocol, connect forces the 

initial TCP 3-way handshake. The call to connect does not return until a TCP connection has been established or TCP reaches a 

timeout threshold and gives up. The call returns 0 if the connection attempt succeeds or -1 if it fails. Connect takes three 

arguments: 

retcode = connect(s , remaddr, remaddrlen)

where s is the descriptor for a socket, remaddr is the address of a structure of type sockaddr_in that specifies the remote 

endpoint to which a connection is desired, and remaddrlen is the length (in bytes) of the second argument. 

Connect performs four tasks. First, it tests to ensure that the specified socket is valid and that it has not already been 

connected. Second, it fills in the remote endpoint address in the socket from the second argument. Third, it chooses a local 

endpoint ad dress for the connection (IP address and protocol port number) if the socket does not have one. Fourth, it initiates a 

TCP connection and returns a value to tell the caller whether the connection succeeded. 

6.15 Communicating With The Server Using TCP 

Assuming the connect call succeeds in establishing a connection, the client can use the connection to communicate with the 

server. Usually, the application protocol specifies a request-response interaction in which the client sends a sequence of 

requests and waits for a response to each. 

Usually, a client calls write to transmit each request and read to await a response. For the simplest application protocols, the 

client sends only a single request and receives only a single response. More complicated application protocols require the client 

to iterate, sending a request and waiting for a response before sending the next request. The following code illustrates the 

request-response interaction by showing how a program writes a simple request over a TCP connection and reads a response: 

/* Example code segment */
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#define BLEN 120 /* buffer length to use */

char *req = "request of some sort";

char buf[BLEN] ; /* buffer for answer */

char *bptr; /* pointer to buffer */

int n; /* number of bytes read */

int buflen; /* space left in buffer */

bptr = buf;

buf_len = BLEN;

/* send request */

write (s, req, strlen (req));

/* read response (may come in many pieces) */

while ((n = read(s, bptr, buflen) > 0) {

bptr += n;

buf_len -= n;

}

6.16 Reading A Response From A TCP Connection 

The code in the previous example shows a client that sends a small message to a server and expects a small response (less 

than 120 bytes). The code contains a single call to write, but makes repeated calls to read. As long as the call to read returns 

data-," the code decrements the count of space available in the buffer and moves the buffer pointer forward past the data read. 

Iteration is necessary on input, even if the application at the other end of the connection sends only a small amount of data 

because TCP is not a block-oriented protocol. Instead, TCP is stream-oriented: it guarantees to deliver the sequence of bytes that 

the sender writes, but it does not guarantee to deliver them in the same grouping as they were written. TCP may choose to break 

a block of data into pieces and transmit each piece in a separate segment (e.g., it may choose to divide the data such that each 

piece fills the maximum sized segment, or it may need to send a small piece if the receiver does not have sufficient buffer space 

for a large one). Alternatively, TCP may choose to accumulate many bytes in its output buffer before sending a segment (e.g., to 

fill a datagram). As a result, the receiving application may receive data in small chunks, even if the sending application passes it 

to TCP in a single call to write. Or, the receiving application may receive data in a large chunk, even if the sending application 

passes it to TCP in a series of calls to write. The idea is fundamental to programming with TCP: 

 

Because TCP does not preserve record boundaries, any program that reads from a TCP connection must 
be prepared to accept data a few bytes at a time. This rule holds even if the sending application writes data 
in large blocks. 
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6.17 Closing A TCP Connection 6.17.1 The Need For Partial Close 

When an application finishes using a connection completely, it can call close to terminate the connection gracefully and 

deallocate the socket. However, closing a connection is seldom simple because TCP allows two-way communication. Thus, 

closing a connection usually requires coordination among the client and server. 

To understand the problem, consider a client and server that use the requestresponse interaction described above. The client 

software repeatedly issues requests to which the server responds. On one hand, the server cannot terminate the connection be 

cause it cannot know whether the client will send additional requests. On the other hand, while the client knows when it has no 

more requests to send, it may not know whether all data has arrived from the server. The latter is especially important for appli-

cation protocols that transfer arbitrary amounts of data in response to a request (e.g., the response to a database query). 

6.17.2 A Partial Close Operation 

To resolve the connection shutdown problem, most implementations of the socket interface include an additional primitive 

that permits applications to shut down a TCP connection in one direction. The shutdown system call takes two arguments, a 

socket descriptor and a direction specification, and shuts down the socket in the specified direction: 

errcode = shutdown (s , direction);

The direction argument is an integer. If it contains 0, no further input is allowed. If it contains 1, no further output is 

allowed. Finally, if the value is 2, the connection is shutdown in both directions. 

The advantage of a partial close should now be clear: when a client finishes sending requests, it can use shutdown to specify 

that it has no further data to send without deallocating the socket. The underlying protocol reports the shutdown to the remote 

machine, where the server application program receives an end-of-file signal. Once the server detects an end-of-file, it knows 

no more requests will arrive. After sending its last response, the server can close the connection. To summarize: 

 

The partial close mechanism removes ambiguity for application protocols that transmit arbitrary amounts 
of information in response to a request. In such cases, the client issues a partial close after its last request; 
the server then closes the connection after its last response. 

 

6.18 Programming A UDP Client 

At first glance, programming a UDP client seems like an easy task. Algorithm 6.2 shows that the basic UDP client algorithm 

is similar to the client algorithm for TCP (Algorithm 6.1). 
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The first few steps of the UDP client algorithm are much like the corresponding steps of the TCP client algorithm. A UDP 

client obtains the server address and protocol port number, and then allocates a socket for communication. 

6.19 Connected And Unconnected UDP Sockets 

Client applications can use UDP in one of two basic modes: connected and unconnected. In connected mode, the client 

uses the connect call to specify a remote endpoint address (i.e., the server's IP address and protocol port number). Once it has 

specified the remote endpoint, the client can send and receive messages much like a TCP client does. In unconnected mode, the 

client does not connect the socket to a specific remote 

endpoint. Instead, it specifies the remote destination each time it sends a message. The chief advantage of connected UDP 

sockets lies in their convenience for conventional client software that interacts with only one server at a time: the application 

only needs to specify the server once no matter how many datagrams it sends. The chief advantage of unconnected sockets lies in 

their flexibility; the client can wait to decide which server to contact until it has a request to send. Furthermore, the client can 

easily send each request to a different server. 

 

UDP sockets can be connected, making it convenient to interact with a specific server, or they can be 
unconnected, making it necessary for the application to specify the server's address each time it sends a 
message. 

 

6.20 Using Connect With UDP 

Although a client can connect a socket of type SOCK_DGRAM, the connect call does not initiate any packet exchange, nor 

does it test the validity of the remote endpoint address. Instead, it merely records the remote endpoint information in the socket 

data structure for later use. Thus, when applied to SOCK_DGRAM sockets, connect only stores an address. Even if the 

connect call succeeds, it does not mean that the remote endpoint address is valid or that the server is reachable. 

6.21 Communicating With A Server Using UDP 

After a UDP client calls connect, it can use write to send a message or read to receive a response. Unlike TCP, UDP 

provides message transfer. Each time the client calls write, UDP sends a single message to the server. The message contains all 

the data passed to write. Similarly, each call to read returns one complete message. Assuming the client has specified a 

sufficiently large buffer, the read call returns all the data from the next message. Therefore, a UDP client does not need to make 

repeated calls to read to obtain a single message. 
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6.22 Closing A Socket That Uses UDP 

A UDP client calls close to close a socket and release the resources associated with it. Once a socket has been closed, the 

UDP software will reject further messages that arrive addressed to the protocol port that the socket had allocated. However, the 

machine on which the close occurs does not inform the remote endpoint that the socket is closed. Therefore, an application that 

uses connectionless transport must be designed so the remote side knows how long to retain a socket before closing it. 

6.23 Partial Close For UDP 

Shutdown can be used with a connected UDP socket to stop further transmission in a given direction. Unfortunately, unlike 

the partial close on a TCP connection, when applied to a UDP socket, shutdown does not send any messages to the other side. In 

stead, it merely marks the local socket as unwilling to transfer data in the direction(s) >pecified. Thus, if a client shuts down 

further output on its socket, the server will not receive any indication that the communication has ceased. 

6.24 A Warning About UDP Unreliability 

Our simplistic UDP client algorithm ignores a fundamental aspect of UDP: namely, that it provides unreliable datagram 

delivery. While a simplistic UDP client can work well on local networks that exhibit low loss, low delay, and no packet 

reordering, clients that follow our algorithm will not work across a complex internet. To work in an internet environment, a 

client must implement reliability through timeout and retransmission. It must also handle the problems of duplicate or out-of-

order packets. Adding reliability can be difficult, and requires expertise in protocol design. 

 

Client software that uses UDP must implement reliability with techniques like packet sequencing, 
acknowledgements, timeouts, and retransmission. Designing protocols that are correct, reliable, and effi-
cient for an internet environment requires considerable expertise. 

 

6.25 Summary 

Client programs are among the most simple network programs. The client must obtain the server's IP address and protocol 

port number before it can communicate; to increase flexibility, client programs often require the user to identify the server when 

in voking the client. The client then converts the server's address from dotted decimal notation into binary, or uses the domain 

name system to convert from a textual machine name into an IP address. 

The TCP client algorithm is straightforward: a TCP client allocates a socket and connects it to a server. The client uses write 
to send requests to the server and read to receive replies. Once it finishes using a connection, either the client or server invokes 

close to terminate it. 

Although a client must explicitly specify the endpoint address of the server with which it wishes to communicate, it can allow 

TCP/IP software to choose an unused protocol port number and to fill in the correct local IP address. Doing so avoids the prob 

lem that can arise on a router or multi-homed host when a client inadvertently chooses an IP address that differs from the IP 

address of the interface over which IP routes the traffic. 

The client uses connect to specify a remote endpoint address for a socket. When used with TCP, connect initiates a 3-

way handshake and ensures that communication is possible. When used with UDP, connect merely records the server's 

endpoint address for later use. 

Connection shutdown can be difficult if neither the client nor the server know exactly when communication has 

ended. To solve the problem, the socket interface supplies the shutdown primitive that causes a partial close and lets the 

other side know that no more data will arrive. A client uses shutdown to close the path leading to the server; the server 

receives an end-of-file signal on the connection that indicates the client has finished. After the server finishes sending its 

last response, it uses close to terminate the connection. 
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FOR FURTHER STUDY 

Many RFCs that define protocols also suggest algorithms or implementation techniques for client code. Stevens [1990] also 

reviews client implementation. 

EXERCISES 

6.1 Read about the sendto and recvfrom socket calls. Do they work with sockets using TCP or sockets using UDP? 

6.2 When the domain name system resolves a machine name, it returns a set of one or more IP addresses. Why? 

6.3 Build client software that uses gethostbyname to look up machine names at your site and print all information returned. Which official 

names, if any, surprised you? Do you tend to use official machine names or aliases? Describe the circumstances, if any, when aliases may not 

work correctly. 

6.4 Measure the time required to look up a machine name (gethostbyname) and a service entry (getservent). Repeat the test for both valid 

and invalid names. Does a look up for an invalid name take substantially longer than for a valid one? Explain any differences you observe. 

6.5 Use a network monitor to watch the network traffic your computer generates when you look up an IP address name using 

gethostbyname. Run the experiment more than one time for each machine name you resolve. Explain the differences in network traffic 

between look ups. 

6.6 To test whether your machine's local byte order is the same as the network byte order, write a program that uses getservbyname to 

look up the ECHO service for UDP and then prints the resulting protocol port value. If the local byte order and network byte order agree, the 

value will be 7. 

6.7 Write a program that allocates a local protocol port, closes the socket, delays a few seconds, and allocates another local port. Run the 

program on an idle machine and on a busy timesharing system. Which port values did your program receive on each system? If they are not the 

same, explain. 

6.8 Under what circumstances can a client program use close instead of shutdown? 

6.9 Should a client use the same protocol port number each time it begins? Why or why not?
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7 
Example Client Software 

 

7.1 Introduction 

The previous chapter discusses the basic algorithms underlying client applications as well as specific techniques used to 

implement those algorithms. This chapter gives examples of complete, working client programs that illustrate the concepts in 

more de tail. The examples use UDP as well as TCP. Most important, the chapter shows how a programmer can build a library 

of procedures that hide the details of socket calls and make it easier to construct client software that is portable and 

maintainable. 

7.2 The Importance Of Small Examples 

TCP/IP defines a myriad of services and the standard application protocols for accessing them. The services range in 

complexity from the trivial (e.g., a character generator service used only for testing protocol software) to the complex (e.g., a file 

transfer service that provides authentication and protection). The examples in this chapter and the next few chapters concentrate 

on implementations of client-server software for simple services. Later chapters review client-server applications for several of 

the complex services. 

While it may seem that the protocols used in the examples do not offer interesting or useful services, studying them is 

important. First, because the services themselves require little code, the client and server software that implements them is easy 

to under stand. More important, the small program size highlights fundamental algorithms and illustrates clearly how client and 

server programs use system functions. Second, studying simple services provides the reader with an intuition about the relative 

size of services and the number of services available. Having an intuitive understanding of small services will be especially 

important for the chapters that discuss the need for multiprotocol and multiservice designs. 

7.3 Hiding Details 

Most programmers understand the advantage of dividing large, complex programs into a set of procedures: a modular 

program becomes easier to understand, debug, and modify than an equivalent monolithic program. If programmers design 

procedures care fully, they can reuse them in other programs. Finally, choosing procedures carefully can also make a program 

easier to port to new computer systems. 

Conceptually, procedures raise the level of the language that programmers use by hiding details. Programmers working with 

the low-level facilities available in most programming languages find programming tedious and prone to error. They also find 

themselves repeating basic segments of code in each program they write. Using procedures helps avoid repetition by providing 

higher-level operations. Once a particular algorithm has been encoded in a procedure, the programmer can use it in many pro-

grams without having to consider the implementation details again. 

A careful use of procedures is especially important when building client and server programs. First, because network software 

includes declarations for items like endpoint addresses, building programs that use network services involves a myriad of tedious 

de tails not found in conventional programs. Using procedures to hide those details reduces the chance for error. Second, much 

of the code needed to allocate a socket, bind addresses, and form a network connection is repeated in each client; placing it in 

procedures allows programmers to reuse the code instead of replicating it. Third, because TCP/IP was designed to interconnect 

heterogeneous machines, network applications often operate on many different machine architectures. Programmers can use pro-

cedures to isolate operating system dependencies, making it easier to port code to a new machine. 
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7.4 An Example Procedure Library For Client Programs 

To understand how procedures can make the programming task easier, consider the problem of building client programs. To 

establish connectivity with a server, a client must choose a protocol (like TCP or UDP), look up the server's machine name, look 

up and map the desired service into a protocol port number, allocate a socket, and connect it. Writing the code for each of these 

steps from scratch for each application wastes time. Furthermore, if programmers ever need to change any of the details, they 

have to modify each application. To minimize programming time, a programmer can write the code once, place it in a 

procedure, and simply call the procedure from each client program. 

The first step of designing a procedure library is abstraction: a programmer must imagine high-level operations that would 

make writing programs simpler. For example, an application programmer might imagine two procedures that handle the work of 

allocating and connecting a socket: 

socket = connectTCP( machine, service ); 

and 

socket = connectUDP( machine, service ); 

It is important to understand that this is not a prescription for the "right" set of abstractions, it merely gives one possible way 

to form such a set. The important idea is: 

The procedural abstraction allows programmers to define high-level operations, share code among 
applications, and reduce the chances of making mistakes with small details. Our example procedures used 
throughout this text merely illustrate one possible approach; programmers should feel free to choose their 
own abstractions. 

7.5 Implementation Of ConnectTCP 

Because both of the proposed procedures, connectTCP and connectUDP, need to allocate a socket and fill in basic 

information, we chose to place all the low-level code in a third procedure, connectsock, and to implement both higher-level 

operations as simple calls. File connectTCP. c illustrates the concept: 

/* connectTCP.c - connectTCP */

int connectsock(const char *host, const char *service,

const char *transport);

/*------------------------------------------------------------------------

* connectTCP - connect to a specified TCP service on a specified host

*------------------------------------------------------------------------

*/

int

connectTCP(const char *host, const char *service )

/*

* Arguments:

* host - name of host to which connection is desired

* service - service associated with the desired port

*/

{

return connectsock( host, service, "tcp");
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}

7.6 Implementation Of ConnectUDP 

File connectUDP. c shows how connectsock can be used to establish a connected socket that uses UDP. 

/* connectUDP.c - connectUDP */

int connectsock(const char *host, const char *service,

const char *transport);

/*------------------------------------------------------------------------

* connectUDP - connect to a specified UDP service on a specified host

*------------------------------------------------------------------------

*/

int

connectUDP(const char *host, const char *service )

/*

* Arguments:

* host - name of host to which connection is desired

* service - service associated with the desired port

*/

{

return connectsock(host, service, "udp");

}

7.7 A Procedure That Forms Connections 

Procedure connectsock contains all the code needed to allocate a socket and connect it. The caller specifies whether to create 

a UDP socket or a TCP socket. 

/* connectsock.c - connectsock */

#define __USE_BSD 1

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

#include <netdb.h>

#include <string.h>

#include <stdlib.h>
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#ifndef INADDR_NONE

#define INADDR_NONE 0xffffffff

#endif /* INADDR_NONE */

typedef unsigned short u_short;

extern int errno;

int errexit(const char *format, ...);

/*------------------------------------------------------------------------

* connectsock - allocate & connect a socket using TCP or UDP

*------------------------------------------------------------------------

*/

int

connectsock(const char *host, const char *service, const char *transport )

/*

* Arguments:

* host - name of host to which connection is desired

* service - service associated with the desired port

* transport - name of transport protocol to use ("tcp" or "udp")

*/

{

struct hostent *phe; /* pointer to host information entry */

struct servent *pse; /* pointer to service information entry */

struct protoent *ppe; /* pointer to protocol information entry*/

struct sockaddr_in sin; /* an Internet endpoint address */

int s, type; /* socket descriptor and socket type */

memset(&sin, 0, sizeof(sin));

sin.sin_family = AF_INET;

/* Map service name to port number */

if ( pse = getservbyname(service, transport) )

sin.sin_port = pse->s_port;

else if ( (sin.sin_port = htons((u_short)atoi(service))) == 0 )

errexit("can't get \"%s\" service entry\n", service);

/* Map host name to IP address, allowing for dotted decimal */

if ( phe = gethostbyname(host) )

memcpy(&sin.sin_addr, phe->h_addr, phe->h_length);
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else if ( (sin.sin_addr.s_addr = inet_addr(host)) == INADDR_NONE )

errexit("can't get \"%s\" host entry\n", host);

/* Map transport protocol name to protocol number */

if ( (ppe = getprotobyname(transport)) == 0)

errexit("can't get \"%s\" protocol entry\n", transport);

/* Use protocol to choose a socket type */

if (strcmp(transport, "udp") == 0)

type = SOCK_DGRAM;

else

type = SOCK_STREAM;

/* Allocate a socket */

s = socket(PF_INET, type, ppe->p_proto);

if (s < 0)

errexit("can't create socket: %s\n", strerror(errno));

/* Connect the socket */

if (connect(s, (struct sockaddr *)&sin, sizeof(sin)) < 0)

errexit("can't connect to %s.%s: %s\n", host, service,

strerror(errno));

return s;

}

Although most steps are straightforward, a few details make the code seem complicated. First, the C language permits 

complex expressions. As a result, the expressions in many of the condition statements contain a function call, an assignment, 

and a com parison, all on one line. For example, the call to getprotobyname appears in an expression that assigns the result to 

variable ppe, and then compares the result to 0. If the value returned is zero (i.e., an error occurred), the if statement executes a 

call to errexit. 

Otherwise, the procedure continues execution. Second, the code uses two library procedures defined by ANSI C, memset and 

memcpy1. Procedure memset places bytes of a given value in a block of memory; it is the fastest way to zero a large structure or 

array. Procedure memcpy copies a block of bytes from one memory location to another, regardless of the contents2. 

Connectsock uses memset to fill the entire sockaddr_in structure with zeroes, and then uses memcpy to copy the bytes of the 

server's IP address into field sin addr. Finally, Connectsock calls procedure connect to connect the socket. If an error occurs, 

it calls errexit. 

/* errexit.c - errexit */

#include <stdarg.h>

#include <stdio.h>

#include <stdlib.h>

                                                        

1 Early versions of UNIX used the names bzero and bcopy. 

2 Function strcpy cannot be used to copy an IP address because IP addresses can contain zero bytes which strcpy interprets as end of string. 



 65

/*------------------------------------------------------------------------

* errexit - print an error message and exit

*------------------------------------------------------------------------

*/

/*VARARGS1*/

int

errexit(const char *format, ...)

{

va_list args;

va_start(args, format);

vfprintf(stderr, format, args);

va_end(args);

exit(1);

}

Errexit takes a variable number of arguments, which it passes on to vfprintf for output. Errexit follows the printf 
conventions for formatted output. The first argument specifies how the output should be formatted; remaining arguments specify 

values to be printed according to the given format. 

7.8 Using The Example Library 

Once programmers have selected abstractions and built a library of procedures, they can construct client applications. If the 

abstractions have been selected well, they make application programming simple and hide many of the details. To illustrate how 

our example library works, we will use it to construct example client applications. Because the clients each access one of the 

standard TCP/IP services, they also serve to illustrate several of the simpler application protocols. 

7.9 The DAYTIME Service 

The TCP/IP standards define an application protocol that allows a user to obtain the date and time of day in a format fit for 

human consumption. The service is officially named the DAYTIME service. 

To access the DAYTIME service, the user invokes a client application. The client contacts a server to obtain the information, 

and then prints it. Although the standard does not specify the exact syntax, it suggests several possible formats. For example, 

DAYTIME could supply a date in the form: 

weekday, month day, year time-timezone 

like 

Thursday, February 22, 1996 17:37:43-PST 

The standard specifies that DAYTIME is available for both TCP and UDP. In both cases, it operates at protocol port 13. 

The TCP version of DAYTIME uses the presence of a TCP connection to trigger output: as soon as a new connection arrives, 

the server forms a text string that contains the current date and time, sends the string, and then closes the connection. Thus, the 

client need not send any request at all. In fact, the standard specifies that the server must discard any data sent by the client. 

The UDP version of DAYTIME requires the client to send a request. A request consists of an arbitrary UDP datagram. 

Whenever a server receives a datagram, it formats the current date and time, places the resulting string in an outgoing datagram, 

and sends it back to the client. Once it has sent a reply, the server discards the datagram that triggered the response. 
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7.10 Implementation Of A TCP Client For DAYTIME 

File TCPdaytime.c contains code for a TCP client that accesses the DAYTIME service. 

/* TCPdaytime.c - TCPdaytime, main */

#include <unistd.h>

#include <stdlib.h>

#include <string.h>

#include <stdio.h>

extern int errno;

int TCPdaytime(const char *host, const char *service);

int errexit(const char *format, ...);

int connectTCP(const char *host, const char *service);

#define LINELEN 128

/*------------------------------------------------------------------------

* main - TCP client for DAYTIME service

*------------------------------------------------------------------------

*/

int

main(int argc, char *argv[])

{

char *host = "localhost"; /* host to use if none supplied */

char *service = "daytime"; /* default service port */

switch (argc) {

case 1:

host = "localhost";

break;

case 3:

service = argv[2];

/* FALL THROUGH */

case 2:

host = argv[1];

break;

default:

fprintf(stderr, "usage: TCPdaytime [host [port]]\n");

exit(1);

}
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TCPdaytime(host, service);

exit(0);

}

/*------------------------------------------------------------------------

* TCPdaytime - invoke Daytime on specified host and print results

*------------------------------------------------------------------------

*/

TCPdaytime(const char *host, const char *service)

{

char buf[LINELEN+1]; /* buffer for one line of text */

int s, n; /* socket, read count */

s = connectTCP(host, service);

while( (n = read(s, buf, LINELEN)) > 0) {

buf[n] = '\0'; /* ensure null-terminated */

(void) fputs( buf, stdout );

}

}

Notice how using connectTCP simplifies the code. Once a connection has been established, DAYTIME merely reads input 

from the connection and prints it, iterating until it detects an end of file condition. 

7.11 Reading From A TCP Connection 

The DAYTIME example illustrates an important idea: TCP offers a stream service that does not guarantee to preserve record 

boundaries. In practice, the stream paradigm means that TCP decouples the sending and receiving applications. For example, 

sup pose the sending application transfers 64 bytes of data in a single call to write, followed by 64 bytes in a second call. The 

receiving application may receive all 128 bytes in a single call to read, or it may receive 10 bytes in the first call, 100 bytes in 

the second call, and 18 bytes in a third call. The number of bytes returned in a call depends on the size of datagrams in the 

underlying internet, the buffer space available, and the delays encountered when crossing the internet. 

Because the TCP stream service does not guarantee to deliver data in the same blocks that it was written, 
an application receiving data from a TCP connection cannot depend on all data being delivered in a 
single transfer; it must repeatedly call read until all data has been obtained. 

7.12 The TIME Service 

TCP/IP defines a service that allows one machine to obtain the current date and time of day from another. Officially named 

TIME, the service is quite simple: a client program executing on one machine sends a request to a server executing on another. 

Whenever the server receives a request, it obtains the current date and time of day from the local operating system, encodes the 

information in a standard format, and sends it back to the client in a response. 

To avoid the problems that occur if the client and server reside in different timezones, the TIME protocol specifies that all 

time and date information must be represented in Universal Coordinated Time3, abbreviated UCT or UT. Thus, a server 

                                                        

3 Universal Coordinated Time was formerly known as Greenwich Mean Time. 
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converts from its local time to universal time before sending a reply, and a client converts from universal time to its local time 

when the reply arrives. 

Unlike the DAYTIME service, which is intended for human users, the TIME service is intended for use by programs that 

store or manipulate times. The TIME protocol always specifies time in a 32-bit integer, representing the number of seconds since 

an epoch date. The TIME protocol uses midnight, January l, 1900, as its epoch. 

Using an integer representation allows computers to transfer time from one machine to another quickly, without waiting to 

convert it into a text string and back into an integer. Thus, the TIME service makes it possible for one computer to set its timeof-

day clock from the clock on another system. 

7.13 Accessing The TIME Service 

Clients can use either TCP or UDP to access the TIME service at protocol port 37 technically, the standards define two 

separate services, one for UDP and one for TCP). A TIME server built for TCP uses the presence of a connection to trigger 

output, much like the DAYTIME service discussed above. The client forms a TCP connection to a TIME server and waits to 

read output. When the server detects a new connection, it sends the current time encoded as an integer, and then closes the 

connection. The client does not send any data because the server never reads from the connection. 

Clients can also access a TIME service with UDP. To do so, a client sends a request, which consists of a single datagram. 

The server does not process the incoming datagram, except to extract the sender's address and protocol port number for use in a 

reply. The server encodes the current time as an integer, places it in a datagram, and sends the datagram back to the client. 

7.14 Accurate Times And Network Delays 

Although the TIME service accommodates differences in timezones, it does not handle the problem of network latency. If it 

takes 3 seconds for a message to travel from the server to the client, the client will receive a time that is 3 seconds behind that of 

the server. Other, more complex protocols handle clock synchronization. However, the TIME service remains popular for three 

reasons. First, TIME is extremely simple compared to clock synchronization protocols. Second, most clients contact servers on a 

local area network, where network latency accounts for only a few milliseconds. Third, except when using programs that use 

timestamps to control processing, humans do not care if the clocks on their computers differ by small amounts. 

In cases where more accuracy is required, it is possible to improve TIME or use an alternative protocol. The easiest way to 

improve the accuracy of TIME is to compute an approximation of network delay between the server and client, and then add that 

ap proximation to the time value that the server reports. For example, one way to approximate latency requires the client to 

compute the time that elapses during the round trip from client to server and back. The client assumes equal delay in both 

directions, and obtains an approximation for the trip back by dividing the round trip time in half. It adds the delay 

approximation to the time of day that the server returns. 

7.15 A UDP Client For The TIME Service 

File UDPtime.c contains code that implements a UDP client for the TIME service. 

/* UDPtime.c - main */

#include <sys/types.h>

#include <unistd.h>

#include <stdlib.h>

#include <string.h>

#include <stdio.h>
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#define BUFSIZE 64

#define UNIXEPOCH 2208988800 /* UNIX epoch, in UCT secs */

#define MSG "what time is it?\n"

typedef unsigned long u_long;

extern int errno;

int connectUDP(const char *host, const char *service);

int errexit(const char *format, ...);

/*------------------------------------------------------------------------

* main - UDP client for TIME service that prints the resulting time

*------------------------------------------------------------------------

*/

int

main(int argc, char *argv[])

{

char *host = "localhost"; /* host to use if none supplied */

char *service = "time"; /* default service name */

time_t now; /* 32-bit integer to hold time */

int s, n; /* socket descriptor, read count*/

switch (argc) {

case 1:

host = "localhost";

break;

case 3:

service = argv[2];

/* FALL THROUGH */

case 2:

host = argv[1];

break;

default:

fprintf(stderr, "usage: UDPtime [host [port]]\n");

exit(1);

}

s = connectUDP(host, service);

(void) write(s, MSG, strlen(MSG));
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/* Read the time */

n = read(s, (char *)&now, sizeof(now));

if (n < 0)

errexit("read failed: %s\n", strerror(errno));

now = ntohl((u_long)now); /* put in host byte order */

now -= UNIXEPOCH; /* convert UCT to UNIX epoch */

printf("%s", ctime(&now));

exit(0);

}

The example code contacts the TIME service by sending a datagram. It then calls read to wait for a reply and extract the 

time value from it. Once UDPtime has obtained the time, it must convert the time into a form suitable for the local machine. 

First, it uses ntohl to convert the 32-bit value (a long in C) from network standard byte order into the local host byte order. 

Second, UDPtime must convert to the machine's local representation. The example code is designed for UNIX. Like the 

Internet protocols, UNIX represents time in a 32-bit integer and interprets the integer to be a count of seconds. Unlike the 

Internet, however, UNIX assumes an epoch date of January 1, 1970. Thus, to convert from the TIME protocol epoch to the 

UNIX epoch, the client must subtract the number of seconds between January 1, 1900 and January 1, 1970. The example code 

uses the conversion value 2208988800. Once the time has been converted to a representation compatible with that of the local 

machine, UDPtime can invoke the library procedure ctime, which converts the value into a human readable form for output. 

7.16 The ECHO Service 

TCP/IP standards specify an ECHO service for both UDP and TCP protocols. At first glance, ECHO services seem almost 

useless because an ECHO server merely returns all the data it receives from a client. Despite their simplicity, ECHO services are 

important tools that network managers use to test reachability, debug protocol software, and identify routing problems. 

The TCP ECHO service specifies that a server must accept incoming connection requests, read data from the connection, and 

write the data back over the connection until the client terminates the transfer. Meanwhile, the client sends input and then reads 

it back. 

7.17 A TCP Client For The ECHO Service 

File TCPecho. c contains a simple client for the ECHO service. 

/* TCPecho.c - main, TCPecho */

#include <unistd.h>

#include <stdlib.h>

#include <string.h>

#include <stdio.h>

extern int errno;

int TCPecho(const char *host, const char *service);

int errexit(const char *format, ...);

int connectTCP(const char *host, const char *service);



 71

#define LINELEN 128

/*------------------------------------------------------------------------

* main - TCP client for ECHO service

*------------------------------------------------------------------------

*/

int

main(int argc, char *argv[])

{

char *host = "localhost"; /* host to use if none supplied */

char *service = "echo"; /* default service name */

switch (argc) {

case 1:

host = "localhost";

break;

case 3:

service = argv[2];

/* FALL THROUGH */

case 2:

host = argv[1];

break;

default:

fprintf(stderr, "usage: TCPecho [host [port]]\n");

exit(1);

}

TCPecho(host, service);

exit(0);

}

/*------------------------------------------------------------------------

* TCPecho - send input to ECHO service on specified host and print reply

*------------------------------------------------------------------------

*/

int

TCPecho(const char *host, const char *service)

{

char buf[LINELEN+1]; /* buffer for one line of text */

int s, n; /* socket descriptor, read count*/

int outchars, inchars; /* characters sent and received */
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s = connectTCP(host, service);

while (fgets(buf, sizeof(buf), stdin)) {

buf[LINELEN] = '\0'; /* insure line null-terminated */

outchars = strlen(buf);

(void) write(s, buf, outchars);

/* read it back */

for (inchars = 0; inchars < outchars; inchars+=n ) {

n = read(s, &buf[inchars], outchars - inchars);

if (n < 0)

errexit("socket read failed: %s\n",

strerror(errno));

}

fputs(buf, stdout);

}

}

After opening a connection, TCPecho enters a loop that repeatedly reads one line of input, sends the line across the TCP 

connection to the ECHO server, reads it back again, and prints it. After all input lines have been sent to the server, received 

back, and printed successfully, the client exits. 

7.18 A UDP Client For The ECHO Service 

File UDPecho. c shows how a client uses UDP to access an ECHO service. 

/* UDPecho.c - main, UDPecho */

#include <unistd.h>

#include <stdlib.h>

#include <string.h>

#include <stdio.h>

extern int errno;

int UDPecho(const char *host, const char *service);

int errexit(const char *format, ...);

int connectUDP(const char *host, const char *service);

#define LINELEN 128

/*------------------------------------------------------------------------

* main - UDP client for ECHO service
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*------------------------------------------------------------------------

*/

int

main(int argc, char *argv[])

{

char *host = "localhost";

char *service = "echo";

switch (argc) {

case 1:

host = "localhost";

break;

case 3:

service = argv[2];

/* FALL THROUGH */

case 2:

host = argv[1];

break;

default:

fprintf(stderr, "usage: UDPecho [host [port]]\n");

exit(1);

}

UDPecho(host, service);

exit(0);

}

/*------------------------------------------------------------------------

* UDPecho - send input to ECHO service on specified host and print reply

*------------------------------------------------------------------------

*/

int

UDPecho(const char *host, const char *service)

{

char buf[LINELEN+1]; /* buffer for one line of text */

int s, nchars; /* socket descriptor, read count*/

s = connectUDP(host, service);

while (fgets(buf, sizeof(buf), stdin)) {

buf[LINELEN] = '\0'; /* insure null-terminated */

nchars = strlen(buf);
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(void) write(s, buf, nchars);

if (read(s, buf, nchars) < 0)

errexit("socket read failed: %s\n",

strerror(errno));

fputs(buf, stdout);

}

}

The example UDP ECHO client follows the same general algorithm as the TCP version. It repeatedly reads a line of input, 

sends it to the server, reads it back from the server, and prints it. The biggest difference between the UDP and TCP versions lies 

in how they treat data received from the server. Because UDP is datagram-oriented, the client treats an input line as a unit and 

places each in a single datagram. Similarly, the ECHO server receives and returns complete datagrams. Thus, while the TCP 

client reads incoming data as a stream of bytes, the UDP client either receives an entire line back from the server or receives 

none of it; each call to read returns the entire line unless an error has occurred. 

7.19 Summary 

Programmers use the procedural abstraction to keep programs flexible and easy to maintain, to hide details, and to make it 

easy to port programs to new computers. Once a programmer writes and debugs a procedure, he or she places it in a library 

where it can be reused in many programs easily. A library of procedures is especially important for programs that use TCP/IP 

because they often operate on multiple computers. 

This chapter presents an example library of procedures used to create client software. The primary procedures in our library, 

connectTCP and connectUDP,  make it easy to allocate and connect a socket to a specified service on a specified host. 

The chapter presents examples of a few client applications. Each example contains the code for a complete C program that 

implements a standard application protocol: DAYTIME (used to obtain and print the time of day in a human-readable format), 

TIME (used to obtain the time in 32-bit integer form), and ECHO (used to test network connectivity). The example code shows 

how a library of procedures hides many of the details associated with socket allocation and makes it easier to write client 

software. 

FOR FURTHER STUDY 

The application protocols described here are each part of the TCP/IP standard. Postel [RFC 867] contains the standard for the 

DAYTIME protocol, Postel and Harrenstien [RFC 868] contains the standard for the TIME protocol, and Postel [RFC 862] 

contains the standard for the ECHO protocol. Mills [RFC 1305] specifies version 3 of the Network Time Protocol, NTP. 

EXERCISES 

7.1 Use program TCPdayt ime to contact servers on several machines. How does each format the time and date? 

7.2 The Internet standard represents time in a 32-bit integer that gives seconds past the epoch, midnight January 1, 1900. UNIX systems 

also represent time in a 32-bit integer that measures seconds, but UNIX uses January 1, 1970 as its epoch. What is the maximum date and 

time that can be represented in each system? 

7.3 Improve the TIME client so it checks the date received to verify that it is greater than January 1, 1996 (or some other date you know to 

be in the recent past). 

7.4 Modify the TIME client so it computes E,  the time that elapses between when it sends the request and when it receives a response. 

Add one-half E to the time the server sends. 

7.5 Build a TIME client that contacts two TIME servers, and reports the differences between the times they return. 
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7.6 Explain how deadlock can occur if a programmer changes the line size in the TCP ECHO client to be arbitrarily large (e.g., 

20,000). 

7.7 The ECHO clients presented in this chapter do not verify that the text they receive back from the server matches the text they 

sent. Modify them to verify the data received. 

7.8 The ECHO clients presented in this chapter do not count the characters sent or received. What happens if a server incorrectly 

sends one additional character back that the client did not send? 

7.9 The example ECHO clients in this chapter do not use shutdown. Explain how the use of shutdown can improve client 

performance. 

7.10 Rewrite the code in UDPecho. c so it tests reachability by generating a message, sending it, and timing the reply. If the reply 

does not arrive in S seconds, declare the destination host to be unreachable. Be sure to retransmit the request at least once in case the 

internet happens to lose a datagram. 

7.11 Rewrite the code in UDPecho. c so it creates and sends a new message once per second, checks replies to be sure they match 

transmissions, and reports only the round trip time for each reply without printing the contents of the message itself. 

7.12 Explain what happens to UDPecho when the underlying network: duplicates a request sent from the client to the server, duplicates a 

response sent from the server to the client, loses a request sent from the client to the server, or loses a response sent from the server to the 

client. Modify the code to handle each of these problems.





 77

8 
Algorithms And Issues In Server Software Design 
8.1 Introduction 

This chapter considers the design of server software. It discusses fundamental issues, including: connectionless vs. 

connection-oriented server access, stateless vs. stateful applications, and iterative vs. concurrent server implementations. It 

describes the advantages of each approach, and gives examples of situations in which the approach is valid. Later chapters 

illustrate the concepts by showing complete server programs that each implement one of the basic design ideas. 

8.2 The Conceptual Server Algorithm 

Conceptually, each server follows a simple algorithm: it creates a socket and binds the socket to the well-known port at which 

it desires to receive requests. It then enters an infinite loop in which it accepts the next request that arrives from a client, 

processes the request, formulates a reply, and sends the reply back to the client. 

Unfortunately, this unsophisticated, conceptual algorithm suffices only for the most trivial services. To understand why, 

consider a service like file transfer that requires substantial time to handle each request. Suppose the first client to contact the 

server re quests the transfer of a giant file (e.g., 200 megabytes), while the second client to contact the server requests the 

transfer of a trivially small file (e.g., 20 bytes). If the server waits until the first transfer completes before starting the second 

transfer, the second client may wait an unreasonable amount of time for a small transfer. The second user would expect a small 

request to be handled immediately. Most practical servers do handle small requests quickly, because they handle more than one 

request at a time. 

8.3 Concurrent Vs. Iterative Servers 

We use the term iterative server to describe a server implementation that processes one request at a time, and the term 

concurrent server to describe a server that handles multiple requests at one time. Although most concurrent servers achieve 

apparent con currency, we will see that a concurrent implementation may not be required- it depends on the application protocol. 

In particular, if a server performs small amounts of processing relative to the amount of I/O it performs, it may be possible to 

implement the server as a single process that uses asynchronous I/O to allow simultaneous use of multiple communication 

channels. From a client's perspective, the server appears to communicate with multiple clients concurrently. The point is: 

The term concurrent server refers to whether the server handles multiple requests concurrently, not to 
whether the underlying implementation uses multiple concurrent processes. 

In general, concurrent servers are more difficult to design and build, and the resulting code is more complex and difficult to 

modify. Most programmers choose concurrent server implementations, however, because iterative servers cause unnecessary 

delays in distributed applications and can become a performance bottleneck that affects many client applications. We can 

summarize: 

Iterative server implementations, which are easier to build and understand, may result in poor 
performance because they make clients wait for service. In contrast, concurrent server implementations, 
which are more difficult to design and build, yield better performance. 

8.4 Connection-Oriented Vs. Connectionless Access 

The issue of connectivity centers around the transport protocol that a client uses to access a server. In the TCP/IP protocol 

suite, TCP provides a connection-oriented transport service, while UDP provides a connectionless service. Thus, servers that 

use TCP are, by definition, connection-oriented servers, while those that use UDP are connectionless servers1. 

                                                        

1 The socket interface does permit an application to connect a UDP socket to a remote endpoint, but practical servers do not do so, and UDP is not a connection-

oriented protocol. 
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Although we apply the terminology to servers, it would be more accurate if we restricted it to application protocols, because 

the choice between connectionless and connection-oriented implementations depends on the application protocol. An applica 

tion protocol designed to use a connection-oriented transport service may perform incorrectly or inefficiently when using a 

connectionless transport protocol. To summarize: 

When considering the advantages and disadvantages of various server implementation strategies, the 
designer must remember that the application protocol used may restrict some or all of the choices. 

8.5 Connection-Oriented Servers 

The chief advantage of a connection-oriented approach lies in ease of programming. In particular, because the transport 

protocol handles packet loss and out-of-order delivery problems automatically, the server need not worry about them. Instead, a 

connection-oriented server manages and uses connections. It accepts an incoming connection from a client, and then sends all 

communication across the connection. It receives requests from the client and sends replies. Finally, the server closes the 

connection after it completes the interaction. 

While a connection remains open, TCP provides all the needed reliability. It retransmits lost data, verifies that data arrives 

without transmission errors, and reorders incoming packets as necessary. When a client sends a request, TCP either delivers it 

reli ably or informs the client that the connection has been broken. Similarly, the server can depend on TCP to deliver responses 

or inform it that the connection has broken. Connection-oriented servers also have disadvantages. Connection-oriented designs 

require a separate socket for each connection, while connectionless designs permit communication with multiple hosts from a 

single socket. Socket allocation and the resulting connection management can be especially important inside an operating system 

that must run forever without exhausting resources. For trivial applications, the overhead of the 3-way handshake used to 

establish and terminate a connection makes TCP expensive compared to UDP. The most important disadvantage arises because 

TCP does not send any packets across an idle connection. Suppose a client establishes a connection to a server, exchanges a 

request and a response, and then crashes. Because the client has crashed, it will never send further requests. However, because 

the server has already responded to all requests received so far, it will never send more data to the client. The problem with such 

a situation lies in resource use: the server has data structures (including buffer space) allocated for the connection and these 

resources cannot be reclaimed. Remember that a server must be designed to run forever. If clients crash repeatedly, the server 

will run out of resources (e.g., sockets, buffer space, TCP connections) and cease to operate. 

8.6 Connectionless Servers 

Connectionless servers also have advantages and disadvantages. While connectionless servers do not suffer from the problem 

of resource depletion, they cannot depend on the underlying transport for reliable delivery. One side or the other must take 

responsibility for reliable delivery. Usually, clients take responsibility for retransmitting requests if no response arrives. If the 

server needs to divide its response into multiple data packets, it may need to implement a retransmission mechanism as well. 

Achieving reliability through timeout and retransmission can be extremely difficult. In fact, it requires considerable expertise 

in protocol design. Because TCP/IP operates in an internet environment where end-to-end delays change quickly, using fixed 

values for timeout does not work. Many programmers learn this lesson the hard way when they move their applications from 

local area networks (which have small delays with little variation) to wider area internets (which have large delays with greater 

variation). To accommodate an internet environment, the retransmission strategy must be adaptive. Thus, applications must 

implement a retransmission scheme as complex as the one used in TCP. As a result, novice programmers are encouraged to use 

connection-oriented transport. 

Because UDP does not supply reliable delivery, connectionless transport requires the application protocol 
to provide reliability, if needed, through a complex, sophisticated technique known as adaptive re-
transmission. Adding adaptive retransmission to an existing application is difficult and requires 
considerable expertise. 

Another consideration in choosing connectionless vs. connection-oriented design focuses on whether the service requires 

broadcast or multicast communication. Because TCP offers point-to-point communication, it cannot supply broadcast or 

multicast com munication; such services require UDP. Thus, any server that accepts or responds to multicast communication 
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must be connectionless. In practice, most sites try to avoid broadcasting whenever possible; none of the standard TCP/IP 

application protocols currently require multicast. However, future applications could depend more on multicast. 

8.7 Failure, Reliability, And Statelessness 

As Chapter 2 states, information that a server maintains about the status of ongoing interactions with clients is called state 

information. Servers that do not keep any state information are called stateless servers, while those that maintain state 

information are called stateful servers. 

The issue of statelessness arises from a need to ensure reliability, especially when using connectionless transport. Remember 

that in an internet, messages can be duplicated, delayed, lost, or delivered out of order. If the transport protocol does not 

guarantee reliable delivery, and UDP does not, the application protocol must be designed to ensure it. Furthermore, the server 

implementation must be done carefully so it does not introduce state dependencies (and inefficiencies) unintentionally. 

8.8 Optimizing Stateless Servers 

To understand the subtleties involved in optimization, consider a connectionless server that allows clients to read information 

from files stored on the server's computer. To keep the protocol stateless, the designer requires each client request to specify a 

file name, a position in the file, and the number of bytes to read. The most straightforward server implementation handles each 

request independently: it opens the specified file, seeks to the specified position, reads the specified number of bytes, sends the 

information back to the client, and then closes the file. 

A clever programmer assigned to write a server observes that: (1) the overhead of opening and closing files is high, (2) the 

clients using this server may read only á dozen bytes in each request, and (3) clients tend to read files sequentially. Furthermore, 

the programmer knows from experience that the server can extract data from a buffer in memory several orders of magnitude 

faster than it can read data from a disk. So, to optimize server performance, the programmer decides to maintain a small table of 

file information as Figure 8.1 shows. 

 

The programmer uses the client's IP address and protocol port number as an index into the table, and arranges for each table 

entry to contain a pointer to a large buffer of data from the file being read. When a client issues its first request, the server 

searches the table and finds that it has no record of the client. It allocates a large buffer to hold data from the file, allocates a new 

table entry to point to the buffer, opens the specified file, and reads data into the buffer. It then copies information out of the 
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buffer when forming a reply. The next time a request arrives from the same client, the server finds the matching entry in the 

table, follows the pointer to the buffer, and extracts data from it without opening the file. Once the client has read the entire file, 

the server deallocates the buffer and the table entry, making the resources available for use by another client. 

Of course, our clever programmer builds the software carefully so that it checks to make sure the requested data resides in the 

buffer and reads new data into the buffer from the file if necessary. The server also compares the file specified in a request with 

the file name in the table entry to verify that the client is still using the same file as the previous request. 

If the clients follow the assumptions listed above and the programmer is careful, adding large file buffers and a simple table 

to the server can improve its performance dramatically. Furthermore, under the assumptions given, the optimized version of the 

server will perform at least as fast as the original version because the server spends little time maintaining the data structures 

compared to the time required to read from a disk. Thus, the optimization seems to improve performance without any penalty. 

Adding the proposed table changes the server in a subtle way, however, because it introduces state information. Of course, 

state information chosen carelessly could introduce errors in the way the server responds. For example, if the server used the 

client's IP address and protocol port number to find the buffer without checking the file name or file offset in the request, 

duplicate or out-of-order requests could cause the server to return incorrect data. But remember we said that the programmer 

who designed the optimized version was clever and programmed the server to check the file name and offset in each request, just 

in case the network duplicates or drops a request or the client decides to read from a new file instead of reading sequentially 

from the old file. Thus, it may seem that the addition of state information does not change the way the server replies. In fact, if 

the programmer is careful, the protocol will remain correct. If so, what harm can the state information do? 

Unfortunately, even a small amount of state information can cause a server to perform badly when machines, client 

programs, or networks fail. To understand why, consider what happens if one of the client programs fails (i.e., crashes) and must 

be restart ed. Chances are high that the client will ask for an arbitrary protocol port number and UDP will assign a new protocol 

port number different from the one assigned for earlier requests. When the server receives a request from the client, it cannot 

know that the client has crashed and restarted, so it allocates a new buffer for the file and a new slot in the table. Consequently, 

it cannot know that the old table entry the client was using should be removed. If the server does not remove old entries, it will 

eventually run out of table slots. 

It may seem that leaving an idle table entry around does not cause any problem as long as the server chooses an entry to 

delete when it needs a new one. For example, the server might choose to delete the least recently used (LRU) entry, much like 

the LRU page replacement strategy used in many virtual memory systems. However, in a network where multiple clients access a 

single server, frequent crashes can cause one client to dominate the table by filling it with entries that will never be reused. In 

the worst case, each request that arrives causes the server to delete an entry and reuse it. If one client crashes and reboots 

frequently enough, it can cause the server to remove entries for legitimate clients. Thus, the server expends more effort 

managing the table and buffers than it does answering requests2. 

The important point here is that: 

A programmer must be extremely careful when optimizing a stateless server because managing small 
amounts of state information can consume resources if clients crash and reboot frequently or if the under-
lying network duplicates or delays messages. 

8.9 Four Basic Types Of Servers 

Servers can be iterative or concurrent, and can use connection-oriented transport or connectionless transport. Figure 8.2 

shows that these properties group servers into four general categories. 

                                                        

2 Virtual memory systems describe this phenomenon as thrashing. 
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8.10 Request Processing Time 

In general, iterative servers suffice only for the most trivial application protocols because they make each client wait in turn. 

The test of whether an iterative implementation will suffice focuses on the response time needed, which can be measured locally 

or globally. 

We define the server's request processing time to be the total time the server takes to handle a single isolated request, and 

we define the client's observed response time as the total delay between the time it sends a request and the time the server 

responds. Obviously, the response time observed by a client can never be less than the server's request processing time. However, 

if the server has a queue of requests to handle, the observed response time can be much greater than the request processing time. 

Iterative servers handle one request at a time. If another request arrives while the server is busy handling an existing request, 

the system enqueues the new request. Once the server finishes processing a request, it looks at the queue to see if it has a new re 

quest to handle. If N denotes the average length of the request queue, the observed response time for an arriving request will be 

approximately N/2 + 1 times the server's request processing time. Because the observed response time increases in proportion to 

N, most implementations restrict N to a small value (e.g., S) and expect programmers to use concurrent servers in cases where a 

small queue does not suffice. 

Another way of looking at the question of whether an iterative server suffices focuses on the overall load the server must 

handle. A server designed to handle K clients, each sending R requests per second must have a request processing time of less 

than 1/KR seconds per request. If the server cannot handle requests at the required rate, its queue of waiting requests will 

eventually overflow. To avoid overflow in servers that may have large request processing times, a designer should consider 

concurrent implementations. 

8.11 Iterative Server Algorithms 

An iterative server is the easiest to design, program, debug, and modify. Thus, most programmers choose an iterative design 

whenever iterative execution provides sufficiently fast response for the expected load. Usually, iterative servers work best with 

simple services accessed by a connectionless access protocol. As the next sections show, however, it is possible to use iterative 

implementations with both connectionless and connection-oriented transport. 

8.12 An Iterative, Connection-Oriented Server Algorithm 

Algorithm 8.1 presents the algorithm for an iterative server accessed via the TCP connection-oriented transport. The sections 

following the algorithm describe each of the steps in more detail. 
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8.13 Binding To A Well-Known Address Using INADDR_ANY 

A server needs to create a socket and bind it to the well-known port for the service it offers. Like clients, servers use 

procedure getportbyname to map a service name into the corresponding well-known port number. For example, TCP/IP defines 

an ECHO service. A server that implements ECHO uses getportbyname to map the string "echo" to the assigned port, 7. 

Remember that when bind specifies a connection endpoint for a socket, it uses structure sockaddr_in, which contains both 

an IP address and a protocol port number. Thus, bind cannot specify a protocol port number for a socket without also specifying 

an IP address. Unfortunately, selecting a specific IP address at which a server will accept connections can cause difficulty. For 

hosts that have a single network connection, the choice is obvious because the host has only one IP address. However, routers 

and multi-homed hosts have multiple IP addresses. If the server specifies one particular IP address when binding a socket to a 

protocol port number, the socket will not accept communications that clients send to the machine's other IP addresses. 

To solve the problem, the socket interface defines a special constant, INADDR_ANY, that can be used in place of an IP 

address. INADDR_ANY specifies a wildcard address that matches any of the host's IP addresses. Using INADDR_ANY 

makes it possible to have a single server on a multihomed host accept incoming communication addressed to any of the hosts's 

IP addresses. To summarize: 

When specifying a local endpoint for a socket, servers use INADDR_ANY, instead of a specific IP address, 
to allow the socket to receive datagrams sent to any of the machine's IP addresses. 

8.14 Placing The Socket In Passive Mode 

A TCP server calls listen to place a socket in passive mode. Listen also takes an argument that specifies the length of an 

internal request queue for the socket. The request queue holds the set of incoming TCP connection requests from clients that 

have each requested a connection with the server. 

8.15 Accepting Connections And Using Them 

A TCP server calls accept to obtain the next incoming connection request (i.e., extract it from the request queue). The call 

returns the descriptor of a socket to be used for the new connection. Once it has accepted a new connection, the server uses read 

to obtain application protocol requests from the client, and write to send replies back. Finally, once the server finishes with the 

connection, it calls close to release the socket. 
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8.16 An Iterative, Connectionless Server Algorithm 

Recall that iterative servers work best for services that have a low request processing time. Because connection-oriented 

transport protocols like TCP have higher overhead than connectionless transport protocols like UDP, most iterative servers use 

con nectionless transport. Algorithm 8.2 gives the general algorithm for an iterative server that uses UDP. 

Creation of a socket for an iterative, connectionless server proceeds in the same way as for a connection-oriented server. The 

server's socket remains unconnected and can accept incoming datagrams from any client. 

 

8.17 Forming A Reply Address In A Connectionless Server 

The socket interface provides two ways of specifying a remote endpoint. Chapters 6 and 7 discuss how clients use connect to 

specify a server's address. After a client calls connect, it can use write to send data because the internal socket data structure 

contains the remote endpoint address as well as the local endpoint address. A connectionless server cannot use connect, 

however, because doing so restricts the socket to communication with one specific remote host and port; the server cannot use 

the socket again to receive datagrams from arbitrary clients. Thus, a connectionless server uses an unconnected socket. It 

generates reply addresses explicitly, and uses the sendto socket call to specify both a datagram to be sent and an address to 

which it should go. Sendto has the form: 

retcode = sendto(s , message, len, flags, toaddr, toaddrlen);

where s is an unconnected socket, message is the address of a buffer that contains the data to be sent, len specifies the 

number of bytes in the buffer, flags specifies debugging or control options, toaddr is a pointer to a sockaddr_in structure that 

contains the endpoint address to which the message should be sent, and toaddrlen is an integer that specifies the length of the 

address structure. 

The socket calls provide an easy way for connectionless servers to obtain the address of a client: the server obtains the 

address for a reply from the source address found in the request. In fact, the socket interface provides a call that servers can use 

to receive the sender's address along with the next datagram that arrives. The call, recvfrom, takes two arguments that specify 

two buffers. The system places the arriving datagram in one buffer and the sender's address in the second buffer. A call to 

recvfrom has the form: 

retcode = recvfrom(s, buf, len, flags, from, fromlen);

where argument s specifies a socket to use, buf specifies a buffer into which the system will place the next datagram, len 

specifies the space available in the buffer, from specifies a second buffer into which the system will place the source address, 
and fromlen specifies the address of an integer. Initially, fromlen specifies the length of the from buffer. When the call 

returns, fromlen will contain the length of the source address the system placed in the buffer. To generate a reply, the server 

uses the address that recvfrom stored in the from buffer when the request arrived. 

8.18 Concurrent Server Algorithms 

The primary reason for introducing concurrency into a server arises from a need to provide faster response times to multiple 

clients. Concurrency improves response time if: 

• forming a response requires significant I/O, 
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• the processing time required varies dramatically among requests, or • the server executes on a computer with multiple 

processors. 

In the first case, allowing the server to compute responses concurrently means that it can overlap use of the processor and 

peripheral devices, even if the machine has only one CPU. While the processor works to compute one response, the I/O devices 

can be transferring data into memory that will be needed for other responses. In the second case, timeslicing permits a single 

processor to handle requests that only require small amounts of processing without waiting for requests that take longer. In the 

third case, concurrent execution on a computer with multiple processors allows one processor to compute a response to one 

request while another processor computes a response to another. In fact, most concurrent servers adapt to the underlying 

hardware automatically - given more hardware resources (e.g., more processors), they perform better. 

Concurrent servers achieve high performance by overlapping processing and I/O. They are usually 
designed so performance improves automatically if the server is run on hardware that offers more 
resources. 

8.19 Master And Slave Processes 

Although it is possible for a server to achieve some concurrency using a single process, most concurrent servers use multiple 

processes. They can be divided into two types: a single master server process begins execution initially. The master process 

opens a socket at the well-known port, waits for the next request, and creates a slave server process to handle each request. 

The master server never communicates directly with a client - it passes that responsibility to a slave. Each slave process handles 

communication with one client. After the slave forms a response and sends it to the client, it exits. The next sections will explain 

the concept of master and slave in more detail, and will show how it applies to both connectionless and connection-oriented 

concurrent servers. 

8.20 A Concurrent, Connectionless Server Algorithm 

The most straightforward version of a concurrent, connectionless server follows Algorithm 8.3. 

 

Programmers should remember that although the exact cost of creating a process depends on the operating system and 

underlying architecture, the operation can be expensive. In the case of a connectionless protocol, one must consider carefully 

whether the cost of concurrency will be greater than the gain in speed. In fact: 

Because process creation is expensive, few connectionless servers have concurrent implementations. 

8.21 A Concurrent, Connection-Oriented Server Algorithm 
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Connection-oriented application protocols use a connection as the basic paradigm for communication. They allow a client to 

establish a connection to a server, communicate over that connection, and then discard it. In most cases, the connection between 

client and server handles more than a single request: the protocol allows a client to repeatedly send requests and receive 

responses without terminating the connection or creating a new one. Thus, Connection-oriented servers implement 

concurrency among connections rather than among individual requests. 

Algorithm 8.4 specifies the steps that a concurrent server uses for a connectionoriented protocol. 

 

As in the connectionless case, the master server process never communicates with the client directly. As soon as a new 

connection arrives, the master creates a slave to handle that connection. While the slave interacts with the client, the master 

waits for other connections. 

8.22 Using Separate Programs As Slaves 

Algorithm 8.4 shows how a concurrent server creates a new process for each connection. In UNIX, the master server does so 

by calling the fork system call. For simple application protocols, a single server program can contain all the code needed for 

both the master and slave processes. After the call to fork, the original process loops back to accept the next incoming 

connection, while the new process becomes the slave and handles the connection. In some cases, however, it may be more 

convenient to have the slave process execute code from a program that has been written and compiled independently. UNIX can 

handle such cases easily because it allows the slave process to call execve after the call to fork. The general idea is: 

For many services, a single program can contain code for both the master and server processes. In cases 
where an independent program makes the slave process easier to program or understand, the master 
program contains a call to execve after the call to fork. 

8.23 Apparent Concurrency Using A Single Process 

Previous sections discuss concurrent servers implemented with concurrent processes. In some cases, however, it makes sense 

to use a single process to handle client requests concurrently. In particular, some operating systems make process crea tion so 

expensive that a server cannot afford to create a new process for each request or each connection. More important, many 

applications require the server to share information among all connections. 

To understand the motivation for a server that provides apparent concurrency with a single process, consider the X 

window system. X allows multiple clients to paint text and graphics in windows that appear on a bit-mapped display. Each client 
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controls one window, sending requests that update the contents. Each client operates independently, and may wait many hours 

before changing the display or may update the display frequently. For example, an application that displays the time by drawing 

a picture of a clock might update its display every minute. Meanwhile, an application that displays the status of a user's 

electronic mail waits until new mail arrives before it changes the display. 

A server for the X window system integrates information it obtains from clients into a single, contiguous section of memory 

called the display buffer. Because data arriving from all clients contributes to a single, shared data structure and because BSD 

UNIX does not allow independent processes to share memory, the server cannot execute as separate UNIX processes. Thus, a 

conflict arises between a desire for concurrency among processes that share memory and a lack of support for such concurrency 

in UNIX. 

Although it may not be possible to achieve real concurrency among processes that share memory, it may be possible to 

achieve apparent concurrency if the total load of requests presented to the server does not exceed its capacity to handle them. 

To do so, the server operates as a single UNIX process that uses the select system call for asynchronous I/O. Algorithm 8.5 

describes the steps a single-process server takes to handle multiple connections. 

 

8.24 When To Use Each Server Type 

Iterative vs. Concurrent: Iterative servers are easier to design, implement, and maintain, but concurrent servers can 

provide quicker response to requests. Use an iterative implementation if request processing time is short and an iterative solution 

produces response times that are sufficiently fast for the application. 

Real vs. Apparent Concurrency: A single-process server must manage multiple connections and use asynchronous I/O; a 

multi-process server allows the operating system to provide concurrency automatically. Use a single-process solution if the server 

must share or exchange data among connections. Use a multi-process solution if each slave can operate in isolation or to achieve 

maximal concurrency (e.g., on a multiprocessor). 

Connection-Oriented vs. Connectionless: Because connection-oriented access means using TCP, it implies reliable 

delivery. Because connectionless transport means using UDP, it implies unreliable delivery. Only use connectionless transport if 

the ap plication protocol handles reliability (almost none do) or each client accesses its server on a local area network that 

exhibits extremely low loss and no packet reordering. Use connection-oriented transport whenever a wide area network separates 

the client and server. Never move a connectionless client and server to a wide area environment without checking to see if the 

application protocol handles the reliability problems. 
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8.25 A Summary of Server Types Iterative, Connectionless Server 

The most common form of connectionless server, used especially for services that require a trivial amount of processing for 

each request. Iterative servers are often stateless, making them easier to understand and less susceptible to failures. 

Iterative, Connection-Oriented Server 
A less common server type used for services that require a trivial amount of processing for each request, but for which 

reliable transport is necessary. Because the overhead associated with establishing and terminating connections can be high, the 

average response time can be non-trivial. 

Concurrent, Connectionless Server 
An uncommon type in which the server creates a new process to handle each request. On many systems, the added cost of 

process creation dominates the added efficiency gained from concurrency. To justify concurrency, either the time required to 

create a new process must be significantly less than the time required to compute a response or concurrent requests must be able 

to use many I/O devices simultaneously. 

Concurrent, Connection-Oriented Server 
The most general type of server because it offers reliable transport (i.e., it can be used across a wide area internet) as well as 

the ability to handle multiple requests concurrently. Two basic implementations exist: the most common implementation uses 

concurrent processes to handle connections; a far less common implementation relies on a single process and asynchronous I/O 

to handle multiple connections. 

In a concurrent process implementation, the master server process creates a slave process to handle each connection. Using 

multiple processes makes it easy to execute a separately compiled program for each connection instead of writing all the code in 

a single, large server program. 

In the single-process implementation, the server process manages multiple connections. It achieves apparent concurrency by 

using asynchronous I/O. The process repeatedly waits for I/O on any of the connections it has open and handles that request. 

Because a single process handles all connections, it can share data among them. However, because the server has only one 

process, it cannot handle requests faster than an iterative server, even on a computer that has multiple processors. The 

application must need data sharing or the processing time for each request must be short to justify this server implementation. 

8.26 The Important Problem Of Server Deadlock 

Many server implementations share an important flaw: namely, the server can be subject to deadlock3. To understand how 

deadlock can happen, consider an iterative, connection-oriented server. Suppose some client application, C, misbehaves. In the 

simplest case, assume C makes a connection to a server, but never sends a request. The server will accept the new connection, 

and call read to extract the next request. The server process blocks in the call to read waiting for a request that will never 

arrive. 

Server deadlock can arise in a much more subtle way if clients misbehave by not consuming responses. For example, assume 

that a client C makes a connection to a server, sends it a sequence of requests, but never reads the responses. The server keeps 

accepting requests, generating responses, and sending them back to the client. At the server, TCP protocol software transmits the 

first few bytes over the connection to the client. Eventually, TCP will fill the client's receive window and will stop transmitting 

data. If the server application program continues to generate responses, the local buffer TCP uses to store outgoing data for the 

connection will become full and the server process will block. 

Deadlock arises because processes block when the operating system cannot satisfy a system call. In particular, a call to write 

will block the calling process if TCP has no local buffer space for the data being sent; a call to read will block the calling 

process until TCP receives data. For concurrent servers, only the single slave process associated with a particular client blocks if 

the client fails to send requests or read responses. For a single-process implementation, however, the central server process will 

                                                        

3 The term deadlock refers to a condition in which a program or set of programs cannot proceed because they are blocked waiting for an event that will never 

happen. In the case of servers, deadlock means that the server ceases to answer requests. 
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block. If the central server process blocks, it cannot handle other connections. The important point is that any server using only 

one process can be subject to deadlock. 

A misbehaving client can cause deadlock in a single-process server if the server uses system functions that 
can block when communicating with the client. Deadlock is a serious liability in servers because it means 
the behavior of one client can prevent the server from handling other clients. 

8.27 Alternative Implementations 

Chapters 9 through 12 provide examples of the server algorithms described in this chapter. Chapters 13 and 14 extend the 

ideas by discussing two important practical implementation techniques not described here: multiprotocol and multiservice 

servers. While both techniques provide interesting advantages for some applications, they have not been included here because 

they are best understood as simple generalizations of the single-process server algorithm illustrated in Chapter 12. 

8.28 Summary 

Conceptually, a server consists of a simple algorithm that iterates forever, waiting for the next request from a 

client, handling the request, and sending a reply. In practice, however, servers use a variety of implementations to 

achieve reliability, flexibility, and efficiency. 

Iterative implementations work well for services that require little computation. When using a connection-

oriented transport, an iterative server handles one connection at a time; for connectionless transport, an iterative 

server handles one request at a time. 

To achieve efficiency, servers often provide concurrent service by handling multiple requests at the same time. 

A connection-oriented server provides for concurrency among connections by creating a process to handle each new 

connection. A connec tionless server provides concurrency by creating a new process to handle each new request. 

Any server implemented with a single process that uses synchronous system functions like read or write can be 

subject to deadlock. Deadlock can arise in iterative servers as well as in concurrent servers that use a single-

process implementation. Server deadlock is especially serious because it means a single misbehaving client can 

prevent the server from handling requests for other clients. 

FOR FURTHER STUDY 

Stevens [1990] describes some of the server algorithms covered in this chapter and shows implementation 

details. BSD UNIX contains examples of many server algorithms; programmers often consult the UNIX source code 

for programming techniques. 

EXERCISES 

8.1 Calculate how long an iterative server takes to transfer a 200 megabyte file if the internet has a throughput of 2.3 Kbytes per second. 

8.2 If 20 clients each send 2 requests per second to an iterative server, what is the maximum time that the server can spend on each 

request? 

8.3 How long does it take a concurrent, connection-oriented server to accept a new connection and create a new process to handle it on the 

computers to which you have access? 

8.4 Write an algorithm for a concurrent, connectionless server that creates one new process for each request. 

8.5 Modify the algorithm in the previous problem so the server creates one new process per client instead of one new process per request. 

How does your algorithm handle process termination? 

8.6 Connection-oriented servers provide concurrency among connections. Does it make sense for a concurrent, connection-oriented server 

to increase concurrency even further by having the slave processes create additional processes for each request? Explain. 
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8.7 Rewrite the TCP echo client so it uses a single process to concurrently handle input from the keyboard, input from its TCP connection, 

and output to its TCP connection. 

8.8 Can clients cause deadlock or disrupt service in concurrent servers? Why or why not? 

8.9 Look carefully at the select system call. How can a single-process server use select to avoid deadlock? 

8.10 The select call takes an argument that specifies how many I/O descriptors it should check. Explain how the argument makes a single-

process server program portable across many UNIX systems.
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9 
Iterative, Connectionless Servers (UDP) 

 

9.1 Introduction 

The previous chapter discusses many possible server designs, comparing the advantages and disadvantages of each. This 

chapter gives an example of an iterative server implementation that uses connectionless transport. The example server follows 

Algorithm 8.21. Later chapters continue the discussion by providing example implementations of other server algorithms. 

9.2 Creating A Passive Socket 

The steps required to create a passive socket are similar to those required to create an active socket. They involve many 

details, and require the program to look up á serice name to obtain a well-known protocol port number. 

To help simplify server code, programmers should use procedures to hide the details of socket allocation. As in the client 

examples, our example implementations use two high-level procedures, passiveUDP and passiveTCP, that allocate a passive 

socket and bind it to the server's well-known port. Each server invokes one of these procedures, with the choice dependent on 

whether the server uses connectionless or connection-oriented transport. This chapter considers passive UDP; the next chapter 

show s the code for passiveTCP. Because the two procedures have many details in common. they both call the low-level 

procedure, passivesock to perform the work. 

A connectionless server calls function passiveUDP to create a socket for the service that it offers. If the server needs to use 

one of the ports reserved for well-known services (i.e., a port numbered below 1024), the server process must have special 

privilege2. An arbitrary application program can use passiveUDP to create a socket for nonprivileged services. PassiveUDP 
calls passivesock to create a connectionless socket, and then returns the socket descriptor to its caller. 

To make it easy to test client and server software, passivesock relocates all port values by adding the contents of global 

integer portbase. The importance of using portbase will become clearer in later chapters. However, the basic idea is fairly easy 

to understand: 

If a new version of a client-server application uses the same protocol port numbers as an existing, 
production version, the new software cannot be tested while the production version continues to execute. 

Using portbase allows a programmer to compile a modified version of a server, and then to have the server look up the 

standard protocol port and compute a final port number as a function of the standard port and the value of portbase. If the 

programmer selects a unique value of portbase for each particular version of a client-server pair, the ports used by the new 

version will not conflict with the ports used by the production version. In fact, using portbase makes it possible to test multiple 

versions of a clientserver pair at the same time without interference because each pair communicates independently of other 

pairs. 

/* passiveUDP.c - passiveUDP */

int passivesock(const char *service, const char *transport,

int qlen);

/*------------------------------------------------------------------------

* passiveUDP - create a passive socket for use in a UDP server

                                                        

1 See page Section 8.16 for a description of Algorithm 8.2. 

2 In UNIX, an application must execute as root (i.e., be the superuser) to have sufficient privilege to bind to a reserved port. 
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*------------------------------------------------------------------------

*/

int

passiveUDP(const char *service)

/*

* Arguments:

* service - service associated with the desired port

*/

{

return passivesock(service, "udp", 0);

}

Procedure passivesock contains the socket allocation details, including the use of portbase. It takes three arguments. The 

first argument specifies the name of a service, the second specifies the name of the protocol, and the third (used only for TCP 

sockets) specifies the desired length of the connection request queue. Passivesock allocates either a datagram or stream socket, 

binds the socket to the well-known port for the service, and returns the socket descriptor to its caller. 

Recall that when a server binds a socket to a well-known port, it must specify the address using structure sockaddr_in, 
which includes an IP address as well as a protocol port number. Passivesock uses the constant INADDR_ANY instead of a 

specific local IP address, enabling it to work either on hosts that have a single IP address or on routers and multi-homed hosts 

that have multiple IP addresses. Using INADDR_ANY means that the server will receive communication addressed to its well-

known port at any of the machine's IP addresses. 

/* passivesock.c - passivesock */

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <stdlib.h>

#include <string.h>

#include <netdb.h>

extern int errno;

typedef unsigned short u_short;

int errexit(const char *format, ...);

u_short portbase = 0; /* port base, for non-root servers */

/*------------------------------------------------------------------------

* passivesock - allocate & bind a server socket using TCP or UDP

*------------------------------------------------------------------------

*/
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int

passivesock(const char *service, const char *transport, int qlen)

/*

* Arguments:

* service - service associated with the desired port

* transport - transport protocol to use ("tcp" or "udp")

* qlen - maximum server request queue length

*/

{

struct servent *pse; /* pointer to service information entry */

struct protoent *ppe; /* pointer to protocol information entry*/

struct sockaddr_in sin; /* an Internet endpoint address */

int s, type; /* socket descriptor and socket type */

memset(&sin, 0, sizeof(sin));

sin.sin_family = AF_INET;

sin.sin_addr.s_addr = INADDR_ANY;

/* Map service name to port number */

if ( pse = getservbyname(service, transport) )

sin.sin_port = htons(ntohs((u_short)pse->s_port)

+ portbase);

else if ( (sin.sin_port = htons((u_short)atoi(service))) == 0 )

errexit("can't get \"%s\" service entry\n", service);

/* Map protocol name to protocol number */

if ( (ppe = getprotobyname(transport)) == 0)

errexit("can't get \"%s\" protocol entry\n", transport);

/* Use protocol to choose a socket type */

if (strcmp(transport, "udp") == 0)

type = SOCK_DGRAM;

else

type = SOCK_STREAM;

/* Allocate a socket */

s = socket(PF_INET, type, ppe->p_proto);

if (s < 0)

errexit("can't create socket: %s\n", strerror(errno));

/* Bind the socket */
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if (bind(s, (struct sockaddr *)&sin, sizeof(sin)) < 0)

errexit("can't bind to %s port: %s\n", service,

strerror(errno));

if (type == SOCK_STREAM && listen(s, qlen) < 0)

errexit("can't listen on %s port: %s\n", service,

strerror(errno));

return s;

}

9.3 Process Structure 

Figure 9.1 illustrates the simple process structure used for an iterative, connectionless server. 

 

The single server process executes forever. It uses a single passive socket that has been bound to the well-known protocol port 

for the service it offers. The server obtains a request from the socket, computes a response, and sends a reply back to the client 

using the same socket. The server uses the source address in the request as the destination address in the reply. 

9.4 An Example TIME Server 

An example will illustrate how a connectionless server process uses the socket allocation procedures described above. Recall 

from Chapter 7 that clients use the TIME service to obtain the current time of day from a server on another system. Because 

TIME requires little computation, an iterative server implementation works well. File UDPtimed.c contains the code for an 

iterative, connectionless TIME server. 

/* UDPtimed.c - main */

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <stdio.h>
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#include <time.h>

#include <string.h>

typedef unsigned long u_long;

extern int errno;

int passiveUDP(const char *service);

int errexit(const char *format, ...);

#define UNIXEPOCH 2208988800 /* UNIX epoch, in UCT secs */

/*------------------------------------------------------------------------

* main - Iterative UDP server for TIME service

*------------------------------------------------------------------------

*/

int

main(int argc, char *argv[])

{

struct sockaddr_in fsin; /* the from address of a client */

char *service = "time"; /* service name or port number */

char buf[1]; /* "input" buffer; any size > 0 */

int sock; /* server socket */

time_t now; /* current time */

int alen; /* from-address length */

switch (argc) {

case 1:

break;

case 2:

service = argv[1];

break;

default:

errexit("usage: UDPtimed [port]\n");

}

sock = passiveUDP(service);

while (1) {

alen = sizeof(fsin);

if (recvfrom(sock, buf, sizeof(buf), 0,
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(struct sockaddr *)&fsin, &alen) < 0)

errexit("recvfrom: %s\n", strerror(errno));

(void) time(&now);

now = htonl((u_long)(now + UNIXEPOCH));

(void) sendto(sock, (char *)&now, sizeof(now), 0,

(struct sockaddr *)&fsin, sizeof(fsin));

}

}

Like any server, the UDPtimed process must execute forever. Thus, the main body of code consists of an infinite loop that 

accepts a request, computes the current time, and sends a reply back to the client that sent the request. 

The code contains several details. After parsing its arguments, UDPtimed calls passive UDP to create a passive socket for 

the TIME service. It then enters the infinite loop. The TIME protocol specifies that a client can send an arbitrary datagram to 

trigger a reply. The datagram can be of any length and can contain any values because the server does not interpret its contents. 

The example implementation uses recvfrom to read the next datagram. Recvfrom places the incoming datagram in buffer buf, 
and places the endpoint address of the client that sent the datagram in structure fsin. Because it does not need to examine the 

data, the implementation uses a single-character buffer. If the datagram contains more than one byte of data, recvfrom discards 

all remaining bytes. 

UDPtimed uses the UNIX system routine time to obtain the current time. Recall from Chapter 7 that UNIX uses a 32-bit 

integer to represent time, measuring from the epoch of midnight, January 1, 1970. After obtaining the time from UNIX, 

UDPtimed must convert it to a value measured from the Internet epoch and place the result in network byte order. To perform 

the conversion, it adds constant UNIXEPOCH, which is defined to have the value 2208988800, the difference in seconds 

between the Internet epoch and the UNIX epoch. It then calls function htonl to convert the result to network byte order. Finally, 

UDPtimed calls sendto to transmit the result back to the client. Sendto uses the endpoint address in structure fsin as the 

destination address (i.e., it uses the address of the client that sent the datagram). 

9.5 Summary 

For simple services, where a server does little computation for each request, an iterative implementation works well. This 

chapter presented an example of an iterative server for the TIME service that uses UDP for connectionless access. The example 

il lustrates how procedures hide the details of socket allocation and make the server code simpler and easier to understand. 

FOR FURTHER STUDY 

Harrenstien [RFC 738] specifies the TIME protocol. Mills [RFC 1305] describes the Network Time Protocol (NTP); Mills 

[September 1991] summarizes issues related to using NTP in practical networks, and Mills [RFC 1361] discusses the use of NTP 

for clock synchronization. Marzullo and Owicki [July 1985] also discusses how to maintain clocks in a distributed environment. 

EXERCISES 

9.1 Instrument UDPtimed to determine how much time it expends processing each request. If you have access to a network analyzer, also 

measure the time that elapses between the request and response packets. 

9.2 Suppose UDPtimed inadvertently clobbered the client's address between the time it received a request and sent a response (i.e., the 

server accidentally assigned fsin a random value before using it in the call to sendto). What would happen? Why? 

9.3 Conduct an experiment to determine what happens if N clients all send requests to UDPtimed simultaneously. Vary both N, the number 

of senders, and S, the size of the datagrams they send. Explain why the server fails to respond to all requests. (Hint: look at the manual page 

for listen.) 

9.4 The example code in UDPtimed. c specifies a buffer size of 1 when it calls recvfrom. What happens if it specifies a buffer size of 0? 
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9.5 Compute the difference between the UNIX time epoch and the Internet time epoch. Remember to account for leap years. Does the 

value you compute agree with the constant UNIXEPOCH defined in UDPtimed? If not, explain. (Hint: read about leap seconds.) 

9.6 As a security check, the system manager asks you to modify UDPtimed so it keeps a written log of all clients who access the service. 

Modify the code to print a line on the console whenever a request arrives. Explain how logging can affect the service. 

9.7 If you have access to a pair of machines connected by a wide-area internet, use the UDPtime client in Chapter 7 and the UDPtimed 
server in this chapter to see if your internet drops or duplicates packets.
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10 
Iterative, Connection-Oriented Servers (TCP) 

 

10.1 Introduction 

The previous chapter provides an example of an iterative server that uses UDP for connectionless transport. This chapter 

shows how an iterative server can use TCP for connection-oriented transport. The example server follows Algorithm 8.11. 

10.2 Allocating A Passive TCP Socket 

Chapter 9 mentions that a connection-oriented server uses function passiveTCP to allocate a stream socket and bind it to the 

well-known port for the service being offered. PassiveTCP takes two arguments. The first argument, a character string, specifies 

the name or number of a service, and the second specifies the desired length of the incoming connection request queue. If the 

first argument contains a name, it must match one of the entries in the service database accessed by library function 

getservbyname. If the first argument specifies a port number, it must represent the number as a text string (e. g., "79"). 

/* passiveTCP.c - passiveTCP */

int passivesock(const char *service, const char *transport,

int qlen);

/*------------------------------------------------------------------------

* passiveTCP - create a passive socket for use in a TCP server

*------------------------------------------------------------------------

*/

int

passiveTCP(const char *service, int qlen)

/*

* Arguments:

* service - service associated with the desired port

* qlen - maximum server request queue length

*/

{

return passivesock(service, "tcp", qlen);

}

10.3 A Server For The DAYTIME Service 

Recall from Chapter 7 that the DAYTIME service allows a user on one machine to obtain the current date and time of day 

from another machine. Because the DAYTIME service is intended for humans, it specifies that the server must format the date 

in an easily readable string of ASCII text when it sends a reply, Thus, the client can display the response for a user exactly as it 

is received. 

                                                        

1 See Section 8.12 for a description of Algorithm 8.1. 
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Chapter 7 shows how a client uses TCP to contact a DAYTIME server and to display the text that the server sends back. 

Because obtaining and formatting a date requires little processing and one expects little demand for the service, a DAYTIME 

server need not be optimized for speed. If additional clients attempt to make connection requests while the server is busy 

handling a request, the protocol software enqueues the additional requests. Thus, an iterative implementation suffices. 

10.4 Process Structure 

As Figure 10.1 shows, an iterative, connection-oriented server uses a single process. The process iterates forever, using one 

socket to handle incoming requests and a second, temporary socket to handle communication with a client. 

 

A server that uses connection-oriented transport iterates on connections: it waits at the well-known port for the next 

connection to arrive from a client, accepts the connection, handles it, closes the connection, and then waits again. The 

DAYTIME service makes the implementation especially simple because the server does not need to receive an explicit request 

from the client - it uses the presence of an incoming connection to trigger a response. Because the client does not send an 

explicit request, the server does not read data from the connection. 

10.5 An Example DAYTIME Server 

File TCPdaytimed. c contains example code for an iterative, connection-oriented DAYTIME server. 

/* TCPdaytimed.c - main */

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <unistd.h>

#include <stdio.h>

#include <string.h>

extern int errno;

int errexit(const char *format, ...);
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int TCPdaytimed(int fd);

int passiveTCP(const char *service, int qlen);

#define QLEN 5

/*------------------------------------------------------------------------

* main - Iterative TCP server for DAYTIME service

*------------------------------------------------------------------------

*/

int

main(int argc, char *argv[])

{

struct sockaddr_in fsin; /* the from address of a client */

char *service = "daytime"; /* service name or port number */

int msock, ssock; /* master & slave sockets */

int alen; /* from-address length */

switch (argc) {

case 1:

break;

case 2:

service = argv[1];

break;

default:

errexit("usage: TCPdaytimed [port]\n");

}

msock = passiveTCP(service, QLEN);

while (1) {

ssock = accept(msock, (struct sockaddr *)&fsin, &alen);

if (ssock < 0)

errexit("accept failed: %s\n", strerror(errno));

(void) TCPdaytimed(ssock);

(void) close(ssock);

}

}

/*------------------------------------------------------------------------

* TCPdaytimed - do TCP DAYTIME protocol

*------------------------------------------------------------------------
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*/

int

TCPdaytimed(int fd)

{

char *pts; /* pointer to time string */

time_t now; /* current time */

char *ctime();

(void) time(&now);

pts = ctime(&now);

(void) write(fd, pts, strlen(pts));

return 0;

}

Like the iterative, connectionless server described in the previous chapter, an iterative, connection-oriented server must run 

forever. After creating a socket that listens at the well-known port, the server enters an infinite loop in which it accepts and 

handles connections. 

The code for the server is fairly short because the call to passiveTCP hides the details of socket allocation and binding. 

The call to passiveTCP creates a master socket associated with the well-known port for the DAYTIME service. The second 

argument specifies that the master socket will have a request queue length of QLEN, allowing the system to enqueue 

connection requests that arrive from QLEN additional clients while the server is busy replying to a request from a given client. 

After creating the master socket, the server's main program enters an infinite loop. During each iteration of the loop, the 

server calls accept to obtain the next connection request from the master socket. To prevent the server from consuming 

resources while waiting for a connection from a client, the call to accept blocks the server process until a connection arrives. 

When a connection request arrives, the TCP protocol software engages in a 3-way handshake to establish a connection. Once the 

handshake completes and the system allocates a new socket for the incoming connection, the call to accept returns the 

descriptor of the new socket, allowing the server to continue execution. If no connection arrives, the server process remains 

blocked forever in the accept call. 

Each time a new connection arrives, the server calls procedure TCPdaytimed to handle it. The code in TCPdaytimed centers 

around calls to the UNIX functions time and ctime. Procedure time returns a 32-bit integer that gives the current time in seconds 

since the UNIX epoch. The UNIX library function ctime takes an integer argument that specifies a time in seconds since the 

UNIX epoch, and returns the address of an ASCII string that contains the time and date formatted so a human can understand it. 

Once the server obtains the time and date in an ASCII string, it calls write to send the string back to the client over the TCP 

connection. 

Once the call to TCPdaytimed returns, the main program continues executing the loop, and encounters the accept call again. 

The accept call blocks the server until another request arrives. 

10.6 Closing Connections 

After it has written the response, the call to procedure TCPdaytimed returns. Once the call returns, the main program 

explicitly closes the socket on which the connection arrived. 

Calling close requests a graceful shutdown. In particular, TCP guarantees that all data will be reliably delivered to the client 

and acknowledged before it terminates the connection. Thus, when calling close, a programmer does not need to worry about 

data being delivered. 
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Of course, TCP's definition of graceful shutdown means that the call to close may not return instantly - the call will block 

until TCP on the server receives a reply from TCP on the client. Once the client acknowledges both the receipt of all data and 

the request to terminate the connection, the close call returns, 

10.7 Connection Termination And Server Vulnerability 

The application protocol determines how a server manages TCP connections. In particular, the application protocol usually 

dictates the choice of the termination strategy. For example, arranging for the server to close connections works well for the 

DAYTIME protocol because the server knows when it has finished sending data. Applications that have more complex client-

server interactions cannot choose to have the server close a connection immediately after processing one request because they 

must wait to see if the client chooses to send additional request messages. For example, consider an ECHO server. The client 

controls server processing because it determines the amount of data to be echoed. Because the server must process arbitrary 

amounts of data, it cannot close the connection after reading and writing once. Thus, the client must signal completion so the 

server knows when to terminate the connection. 

Allowing a client to control connection duration can be dangerous because it allows clients to control resource use. In 

particular, misbehaving clients can cause the server to consume resources like sockets and TCP connections. It may seem that 

our example server will never run out of resources because it explicitly closes connections. Even our simple connection 

termination strategy can be vulnerable to misbehaving clients. To understand why, recall that TCP defines a connection timeout 

period of 2 times the maximum segment lifetime (2*MSL) after a connection closes. During the timeout, TCP keeps a record of 

the connection so it can correctly reject any old packets that may have been delayed. Thus, if clients make repeated requests 

rapidly, they can use up resources at the server. Although programmers may have little control over protocols, they should 

understand how protocols can make distributed software vulnerable to network failures and try to avoid such vulnerabilities 

when designing servers. 

10.8 Summary 

An iterative, connection-oriented server iterates once per connection. Until a connection request arrives from a client, the 

server remains blocked in a call to accept. Once the underlying protocol software establishes the new connection and creates a 

new socket, the call to accept returns the socket descriptor and allows the server to continue execution. 

Recall from Chapter 7 that the DAYTIME protocol uses the presence of a connection to trigger a response from the server. 

The client does not need to send a request because the server responds as soon as it detects a new connection. To form a 

response, the server obtains the current time from the operating system, formats the information into a string suitable for humans 

to read, and then sends the response back to the client. The example server closes the socket that corresponds to an individual 

connection after sending a response. The strategy of closing the connection immediately works because the DAYTIME service 

only allows one response per connection. Servers that allow multiple requests to arrive over a single connection must wait for the 

client to close the connection. 

FOR FURTHER STUDY 

Postel [RFC 867] describes the DAYTIME protocol used in this chapter. 

EXERCISES 

10.1 Does a process need special privilege to run a DAYTIME server on your local system? Does it need special privilege to run a 

DAYTIME client? 

10.2 What is the chief advantage of using the presence of a connection to trigger a response from a server? The chief disadvantage? 

10.3 Some DAYTIME servers terminate the line of text by a combination of two characters: carriage return (CR) and linefeed (LF). 
Modify the example server to send CR-LF at the end of the line instead of sending only LF. How does the standard specify lines should be 

terminated? 
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10.4 TCP software usually allocates a fixed-size queue for additional connection requests that arrive while a server is busy, and allows the 

server to change the queue size using listen. How large is the queue that your local TCP software provides? How large can the server make the 

queue with listen? 

10.5 Modify the example server code in TCPdaytimed. c so it does not explicitly close the connection after writing a response. Does it still 

work correctly? Why or why not? 

10.6 Compare a connection-oriented server that explicitly closes each connection after sending a response to one that allows the client to 

hold a connection arbitrarily long before closing the connection. What are the advantages and disadvantages of each approach? 

10.7 Assume that TCP uses a connection timeout of 4 minutes (i.e., keeps information for 4 minutes after a connection closes). If a 

DAYTIME server runs on a system that has 100 slots for TCP connection information, what is the maximum rate at which the server can 

handle requests without running out of slots?
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11 
Concurrent, Connection-Oriented Servers (TCP) 

 

11.1 Introduction 

The previous chapter illustrates how an iterative server uses a connection-oriented transport protocol. This chapter gives an 

example of a concurrent server that uses a connection-oriented transport. The example server follows Algorithm 8.41, the design 

that programmers use most often when they build concurrent TCP servers. The server relies on the operating system's support for 

concurrent processing to achieve concurrency when computing responses. The system manager arranges to have the master 

server process start automatically when the system boots. The master server runs forever waiting for new connection requests to 

arrive from clients. The master creates a new slave process to handle each new connection, and allows each slave to handle all 

communication with its client. 

Later chapters consider alternative implementations of concurrent servers, and show how to extend the basic ideas presented 

here. 

11.2 Concurrent ECHO 

Consider the ECHO service described in Chapter 7. A client opens a connection to a server, and then repeatedly sends data 

across the connection and reads the "echo" the server returns. The ECHO server responds to each client. It accepts a connection, 

reads from the connection, and then sends back the same data it receives. 

To allow a client to send arbitrary amounts of data, the server does not read the entire input before it sends a response. 

Instead, it alternates between reading and writing. When a new connection arrives, the server enters a loop. On each iteration of 

the loop, the server first reads from the connection and then writes the data back to the connection. The server continues 

iterating until it encounters an end-of-file condition, at which time it closes the connection. 

11.3 Iterative Vs. Concurrent Implementations 

An iterative implementation of an ECHO server can perform poorly because it requires a given client to wait while it handles 

all prior connection requests. If a client chooses to send large amounts of data (e.g., many megabytes), an iterative server will 

delay all other clients until it can satisfy the request. 

A concurrent implementation of an ECHO server avoids long delays because it does not allow a single client to hold all 

resources. Instead, a concurrent server allows its communication with many clients to proceed simultaneously. Thus, from a 

client's point of view, a concurrent server offers better observed response time than an iterative server. 

11.4 Process Structure 

Figure 11.1 illustrates the process structure of a concurrent, connection-oriented server. As the figure shows, the master 

server process does not communicate with clients directly. Instead, it merely waits at the well-known port for the next connection 

request. Once a request has arrived, the system returns the socket descriptor of the new socket to use for that connection. The 

master server process creates a slave process to handle the connection, and allows the slave to operate concurrently. At any time, 

the server consists of one master process and zero or more slave processes. 

                                                        

1 See Section 8.21 for a description of Algorithm 8.4. 
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To avoid using CPU resources while it waits for connections, the master server uses a blocking call of accept to obtain the 

next connection from the well-known port. Thus, like the iterative server process in Chapter 10, the master server process in a 

con current server spends most of its time blocked in a call to accept. When a connection request arrives, the call to accept 
returns, allowing the master process to execute. The master creates a slave to handle the request, and reissues the call to accept. 
The call blocks the server again until another connection request arrives. 

11.5 An Example Concurrent ECHO Server 

File TCPechod. c contains the code for an ECHO server that uses concurrent processes to provide concurrent service to 

multiple clients. 

/* TCPechod.c - main, TCPechod */

#include <sys/types.h>

#include <sys/signal.h>

#include <sys/socket.h>

#include <sys/time.h>

#include <sys/resource.h>

#include <sys/wait.h>

#include <sys/errno.h>

#include <netinet/in.h>

#include <unistd.h>

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#define QLEN 5 /* maximum connection queue length */

#define BUFSIZE 4096
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extern int errno;

void reaper(int);

int TCPechod(int fd);

int errexit(const char *format, ...);

int passiveTCP(const char *service, int qlen);

/*------------------------------------------------------------------------

* main - Concurrent TCP server for ECHO service

*------------------------------------------------------------------------

*/

int

main(int argc, char *argv[])

{

char *service = "echo"; /* service name or port number */

struct sockaddr_in fsin; /* the address of a client */

int alen; /* length of client's address */

int msock; /* master server socket */

int ssock; /* slave server socket */

switch (argc) {

case 1:

break;

case 2:

service = argv[1];

break;

default:

errexit("usage: TCPechod [port]\n");

}

msock = passiveTCP(service, QLEN);

(void) signal(SIGCHLD, reaper);

while (1) {

alen = sizeof(fsin);

ssock = accept(msock, (struct sockaddr *)&fsin, &alen);

if (ssock < 0) {

if (errno == EINTR)

continue;

errexit("accept: %s\n", strerror(errno));
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}

switch (fork()) {

case 0: /* child */

(void) close(msock);

exit(TCPechod(ssock));

default: /* parent */

(void) close(ssock);

break;

case -1:

errexit("fork: %s\n", strerror(errno));

}

}

}

/*------------------------------------------------------------------------

* TCPechod - echo data until end of file

*------------------------------------------------------------------------

*/

int

TCPechod(int fd)

{

char buf[BUFSIZ];

int cc;

while (cc = read(fd, buf, sizeof buf)) {

if (cc < 0)

errexit("echo read: %s\n", strerror(errno));

if (write(fd, buf, cc) < 0)

errexit("echo write: %s\n", strerror(errno));

}

return 0;

}

/*------------------------------------------------------------------------

* reaper - clean up zombie children

*------------------------------------------------------------------------

*/

/*ARGSUSED*/

void

reaper(int sig)

{
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int status;

while (wait3(&status, WNOHANG, (struct rusage *)0) >= 0)

/* empty */;

}

As the example shows, the calls that control concurrency occupy only a small portion of the code. A master server process 

begins executing at main. After it checks its arguments, the master server calls passiveTCP to create a passive socket for the 

wellknown protocol port. It then enters an infinite loop. 

During each iteration of the loop, the master server calls accept to wait for a connection request from a client. As in the 

iterative server, the call blocks until a request arrives. After the underlying TCP protocol software receives a connection request, 

the system creates a socket for the new connection, and the call to accept returns the socket descriptor. 

After accept returns, the master server creates a slave process to handle the connection. To do so, the master process calls 

fork to divide itself into two processes2. The newly created child process first closes the master socket, and then calls procedure 

TCPechod to handle the connection. The parent process closes the socket that was created to handle the new connection, and 

continues executing the infinite loop. The next iteration of the loop will wait at the accept call for another new connection to ar-

rive. Note that both the original and new processes have access to open sockets after the call to fork(), and that they both must 

close a socket before the system deallocates it. Thus, when the master process calls close for the new connection, the socket for 

that connection only disappears from the master process. Similarly, when the slave process calls close for the master socket, the 

socket only disappears from the slave process. The slave process continues to retain access to the socket for the new connection 

until the slave exits; the master server continues to retain access to the socket that corresponds to the well-known port. 

After the slave closes the master socket, it calls procedure TCPechod, which provides the ECHO service for one connection. 

Procedure TCPechod consists of a loop that repeatedly calls read to obtain data from the connection and then calls write to 

send the same data back over the connection. Normally, read returns the (positive) count of bytes read. It returns a value less 

than zero if an error occurs (e.g., the network connection between the client and server breaks) or zero if it encounters an end-
of-file condition (i.e., no more data can be extracted from the socket). Similarly, write normally returns the count of characters 

written, but returns a value less than zero if an error occurs. The slave checks the return codes, and uses errexit to print a 

message if an error occurs. 

TCPechod returns zero if it can echo all data without error. When TCPechod returns, the main program uses the returned 

value as the argument in a call to exit.  UNIX interprets the exit call as a request to terminate the process, and uses the 

argument as a process exit code. By convention, a process uses exit code zero to denote normal termination. Thus, the slave 

process exits normally after performing the ECHO service. When the slave exits, the system automatically closes all open 

descriptors, including the descriptor for the TCP connection. 

11.6 Cleaning Up Errant Processes 

Because concurrent servers generate processes dynamically, they introduce a potential problem of incompletely terminated 

processes. UNIX solves the problem by sending a signal to the parent whenever a child process exits. The exiting process 

remains in a zombie state until the parent executes a wait3 system call. To terminate a child completely (i.e., to eliminate a 

zombie process), our example ECHO server catches the child termination signal and executes a signal handling function. The 

call 

signal (SID, reaper) ;

informs the operating system that the master server process should execute function reaper whenever it receives a signal 

that a child process has exited (signal SIGCHLD). After the call to signal, the system automatically invokes reaper each 

time the server process receives a SIGCHLD signal. 

                                                        

2 Recall from Chapter 3 that fork creates two processes, both executing the same code. The return value distinguishes between the original parent process and the 

newly created child. 
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Function reaper calls system function wait3 to complete termination for a child that exits. Wait3 blocks until one or more 

children exit (for any reason). It returns a value in the status structure that can be examined to find out about the process that 

exit ed. Because the program calls wait3 when a SIGCHLD signal arrives, it will always be called after a child has exited. To 

ensure that an erroneous call does not deadlock the server, the program uses argument WNOHANG to specify that wait3 
should not block waiting for a process to exit, but should return immediately, even if no process has exited. 

11.7 Summary 

Connection-oriented servers achieve concurrency by allowing multiple clients to communicate with the server. The 

straightforward implementation in this chapter uses the fork function to create a new slave process each time a connection 

arrives. The master process never interacts with any clients; it merely accepts connections and creates a slave to handle each of 

them. 

Each slave process begins execution in the main program immediately following the call to fork. The master process closes 

its copy of the descriptor for the new connection, and the slave closes its copy of the master descriptor. A connection to a client 

terminates after the slave exits because the operating system closes the slave's copy of the socket. 

FOR FURTHER STUDY 

Postel [RFC 862] defines the ECHO protocol used in the example TCP server. 

EXERCISES 

11.1 Instrument the server so it keeps a log of the time at which it creates each slave process and the time at which the slave terminates. 

How many clients must you start before you can find any overlap between the slave processes? 

11.2 How many clients can access the example concurrent server simultaneously before any client must be denied service? How many can 

access the iterative server in Chapter 10 before any is denied service? 

11.3 Build an iterative implementation of an ECHO server. Conduct an experiment to determine if a human can sense the difference in 

response time between the concurrent and iterative versions. 

11.4 Modify the example server so procedure TCPechod explicitly closes the connection before it returns. Explain why an explicit call to 

close might make the code easier to maintain.
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12 
Single-Process, Concurrent Servers (TCP) 

 

12.1 Introduction 

The previous chapter illustrates how most concurrent, connection-oriented servers operate. They use operating system 

facilities to create a separate process for each connection, and allow the operating system to timeslice the processor among the 

processes. This chapter illustrates a design idea that is interesting, but not obvious: it shows how a server can offer apparent 

concurrency to clients while using only a single process. First, it examines the general idea. It discusses why such an approach is 

feasible and when it may be superior to an implementation using multiple processes. Second, it considers how a single-process 

server uses the UNIX system calls to handle multiple connections concurrently. The example server follows Algorithm 8.51. 

12.2 Data-driven Processing In A Server 

For applications where I/O dominates the cost of preparing a response to a request, a server can use asynchronous I/O to 

provide apparent concurrency among clients. The idea is simple: arrange for a single server process to keep TCP connections 

open to multiple clients, and have the server handle a given connection when data arrives. Thus, the server uses the arrival of 

data to trigger processing. 

To understand why the approach works, consider the concurrent ECHO server described in the previous chapter. To achieve 

concurrent execution, the server creates a separate slave process to handle each new connection. In theory, the server depends on 

the operating system's timeslicing mechanism to share the CPU among the processes, and hence, among the connections. 

In practice, however, an ECHO server seldom depends on timeslicing. If one were able to watch the execution of a concurrent 

ECHO server closely, one would find thal the arrival of data often controls processing. The reason relates to data flow across an 

internet. Data arrives at the server in bursts, not in a steady stream, because the underlying internet delivers data in discrete 

packets. Clients add to the bursty behavior ii they choose to send blocks of data so that the resulting TCP segments each fit into a 

single IP datagram. At the server, each slave process spends most of its time blocked in a call to read waiting for the next burst 

to arrive. Once the data arrives, the read call returns and the slave process executes. The slave calls write to send the data back 

tc the client, and then calls read again to wait for more data. A CPU that can handle the load of many clients without slowing 

down must execute sufficiently fast to complete the cycle of reading and writing before data arrives for another slave. 

Of course, if the load becomes so great that the CPU cannot process one requesl before another arrives, timesharing takes 

over. The operating system switches the processor among all slaves that have data to process. For simple services that require 

little processing for each request, chances are high that execution will be driven by the arrival of data. To summarize: 

Concurrent servers that require little processing time per request often behave in a sequential manner 
where the arrival of data triggers execution. Timesharing only takes over if the load becomes so high that 
the CPU cannot handle it sequentially. 

12.3 Data-Driven Processing With A Single Process 

Understanding the sequential nature of a concurrent server's behavior allows us to understand how a single process can 

perform the same task. Imagine a single server process that has TCP connections open to many clients. The process blocks 

waiting for data to arrive. As soon as data arrives on any connection, the process awakens, handles the request, and sends a 

reply. It then blocks again, waiting for more data to arrive from another connection. As long as the CPU is fast enough to satisfy 

the load presented to the server, the single process version handles requests as well as a version with multiple processes. In fact, 

                                                        

1 See Section 8.23 for a description of Algorithm 8.5. 
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because a single-process implementation requires less switching between process contexts, it may be able to handle a slightly 

higher load than an implementation that uses multiple processes. 

The key to programming a single-process concurrent server lies in the use of asynchronous I/O through the operating system 

primitive select. A server creates a socket for each of the connections it must manage, and then calls select to wait for data to 

ar rive on any of them. In fact, because select can wait for I/O on all possible sockets, it can also wait for new connections at the 

same time. Algorithm 8.5 lists the detailed steps a single-process server uses. 

 

12.4 Process Structure Of A Single-Process Server 

Figure 12.1 illustrates the process and socket structure of a single-process, concurrent server. One process manages all 

sockets. 

In essence, a single process server must perform the duties of both the master and slave processes. It maintains a set of 

sockets, with one socket in the set bound to the well-known port at which the master would accept connections. The other 

sockets in the set each correspond to a connection over which a slave would handle requests. The server passes the set of socket 

descriptors as an argument to select, and waits for activity on any of them. When select returns, it passes back a bit mask that 

specifies which of the descriptors in the set is ready. The server uses the order in which descriptors become ready to decide how 

to proceed. 

To distinguish between master and slave operations, a single-process server uses the descriptor. If the descriptor that 

corresponds to the master socket becomes ready, the server performs the same operation the master would perform: it calls 

accept on the socket to obtain a new connection. If a descriptor that corresponds to a slave socket becomes ready, the server 

performs the operation a slave would perform: it calls read to obtain a request, and then answers it. 

12.5 An Example Single-Process ECHO Server 

An example will help clarify the ideas and explain how a single-process, concurrent server works. Consider file 

TCPmechod.c. which contains the code for a single-process server that implements the ECHO service. 

/* TCPmechod.c - main, echo */

#include <sys/types.h>

#include <sys/socket.h>

#include <sys/time.h>
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#include <netinet/in.h>

#include <unistd.h>

#include <string.h>

#include <stdio.h>

#define QLEN 5 /* maximum connection queue length */

#define BUFSIZE 4096

extern int errno;

int errexit(const char *format, ...);

int passiveTCP(const char *service, int qlen);

int echo(int fd);

/*------------------------------------------------------------------------

* main - Concurrent TCP server for ECHO service

*------------------------------------------------------------------------

*/

int

main(int argc, char *argv[])

{

char *service = "echo"; /* service name or port number */

struct sockaddr_in fsin; /* the from address of a client */

int msock; /* master server socket */

fd_set rfds; /* read file descriptor set */

fd_set afds; /* active file descriptor set */

int alen; /* from-address length */

int fd, nfds;

switch (argc) {

case 1:

break;

case 2:

service = argv[1];

break;

default:

errexit("usage: TCPmechod [port]\n");

}

msock = passiveTCP(service, QLEN);
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nfds = getdtablesize();

FD_ZERO(&afds);

FD_SET(msock, &afds);

while (1) {

memcpy(&rfds, &afds, sizeof(rfds));

if (select(nfds, &rfds, (fd_set *)0, (fd_set *)0,

(struct timeval *)0) < 0)

errexit("select: %s\n", strerror(errno));

if (FD_ISSET(msock, &rfds)) {

int ssock;

alen = sizeof(fsin);

ssock = accept(msock, (struct sockaddr *)&fsin,

&alen);

if (ssock < 0)

errexit("accept: %s\n",

strerror(errno));

FD_SET(ssock, &afds);

}

for (fd=0; fd<nfds; ++fd)

if (fd != msock && FD_ISSET(fd, &rfds))

if (echo(fd) == 0) {

(void) close(fd);

FD_CLR(fd, &afds);

}

}

}

/*------------------------------------------------------------------------

* echo - echo one buffer of data, returning byte count

*------------------------------------------------------------------------

*/

int

echo(int fd)

{

char buf[BUFSIZ];

int cc;

cc = read(fd, buf, sizeof buf);
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if (cc < 0)

errexit("echo read: %s\n", strerror(errno));

if (cc && write(fd, buf, cc) < 0)

errexit("echo write: %s\n", strerror(errno));

return cc;

}

The single-process server begins, like the master server in a multiple-process implementation, by opening a passive socket at 

the well-known port. It uses FD_ZERO and FD_SET to create a bit vector that corresponds to the socket descriptors that it 

wishes to test. The server then enters an infinite loop in which it calls select to wait for one or more of the descriptors to 

become ready. 

If the master descriptor becomes ready, the server calls accept to obtain a new connection. It adds the descriptor for the new 

connection to the set it manages, and continues to wait for more activity. If a slave descriptor becomes ready, the server calls pro 

cedure echo which calls read to obtain data from the connection and write to send it back to the client. If one of the slave 

descriptors reports an end-of-file condition, the server closes the descriptor and uses macro FD_CLR to remove it from the set 

of descriptors select uses. 

12.6 Summary 

Execution in concurrent servers is often driven by the arrival of data and not by the timeslicing mechanism in the underlying 

operating system. In cases where the service requires little processing, a single-process implementation can use asynchronous 

I/O to manage connections to multiple clients as effectively as an implementation that uses multiple processes. 

The single-process implementation performs the duties of the master and slave processes. When the master socket becomes 

ready, the server accepts a new connection. When any other socket becomes ready, the server reads a request and sends a re ply. 

An example single-process server for the ECHO service illustrates the ideas and shows the programming details. 

FOR FURTHER STUDY 

A good protocol specification does not constrain the implementation. For example, the single-process server described in this 

chapter implements the ECHO protocol defined by Postel [RFC 862]. Chapter 11 shows an example of a multiple-process, con-

current server built from the same protocol specification. 

EXERCISES 

12.1 Conduct an experiment that proves the example ECHO server can handle connections concurrently. 

12.2 Does it make sense to use the implementation discussed in this chapter for the DAYTIME service? Why or why not? 

12.3 Read the UNIX Programmer's Manual to find out the exact representation of descriptors in the list passed to select .  Write the 

FD_SET and FD_CLR macros. 

12.4 Compare the performance of single-process and multiple-process server implementations on a computer with multiple processors. 

Under what circumstances will a single-process version perform better than (or equal to) a multiple-process version? 

12.5 Suppose a large number of clients (e.g., 100) access the example server in this chapter at the same time. Explain what each client 

might observe. 

12.6 Can a single-process server ever deprive one client of service while it repeatedly honors requests from another? Can a multiple-

process implementation ever exhibit the same behavior? Explain.





 117

12 
Single-Process, Concurrent Servers (TCP) 

 

12.1 Introduction 

The previous chapter illustrates how most concurrent, connection-oriented servers operate. They use operating system 

facilities to create a separate process for each connection, and allow the operating system to timeslice the processor among the 

processes. This chapter illustrates a design idea that is interesting, but not obvious: it shows how a server can offer apparent 

concurrency to clients while using only a single process. First, it examines the general idea. It discusses why such an approach is 

feasible and when it may be superior to an implementation using multiple processes. Second, it considers how a single-process 

server uses the UNIX system calls to handle multiple connections concurrently. The example server follows Algorithm 8.51. 

12.2 Data-driven Processing In A Server 

For applications where 1/O dominates the cost of preparing a response to a request, a server can use asynchronous I/O to 

provide apparent concurrency among clients. The idea is simple: arrange for a single server process to keep TCP connections 

open to multiple clients, and have the server handle a given connection when data arrives. Thus, the server uses the arrival of 

data to trigger processing. 

To understand why the approach works, consider the concurrent ECHO server described in the previous chapter. To achieve 

concurrent execution, the server creates a separate slave process to handle each new connection. In theory, the server depends on 

the operating system's timeslicing mechanism to share the CPU among the processes, and hence, among the connections. 

In practice, however, an ECHO server seldom depends on timeslicing. If one were able to watch the execution of a concurrent 

ECHO server closely, one would find that the arrival of data often controls processing. The reason relates to data flow across an 

internet. Data arrives at the server in bursts, not in a steady stream, because the underlying internet delivers data in discrete 

packets. Clients add to the bursty behavior if they choose to send blocks of data so that the resulting TCP segments each fit into a 

single IP datagram. At the server, each slave process spends most of its time blocked in a call to read waiting for the next burst 

to arrive. Once the data arrives, the read call returns and the slave process executes. The slave calls write to send the data back 

to the client, and then calls read again to wait for more data. A CPU that can handle the load of many clients without slowing 

down must execute sufficiently fast to complete the cycle of reading and writing before data arrives for another slave. 

Of course, if the load becomes so great that the CPU cannot process one request before another arrives, timesharing takes 

over. The operating system switches the processor among all slaves that have data to process. For simple services that require 

little processing for each request, chances are high that execution will be driven by the arrival of data. To summarize: 

Concurrent servers that require little processing time per request often behave in a sequential manner 
where the arrival of data triggers execution. Timesharing only takes over if the load becomes so high that 
the CPU cannot handle it sequentially. 

12.3 Data-Driven Processing With A Single Process 

Understanding the sequential nature of a concurrent server's behavior allows us to understand how a single process can 

perform the same task. Imagine a single server process that has TCP connections open to many clients. The process blocks 

waiting for data to arrive. As soon as data arrives on any connection, the process awakens, handles the request, and sends a 

reply. It then blocks again, waiting for more data to arrive from another connection. As long as the CPU is fast enough to satisfy 

the load presented to the server, the single process version handles requests as well as a version with multiple processes. In fact, 

                                                        

1 See page Section 8.23 for a description of Algorithm 8.5. 
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because a single-process implementation requires less switching between process contexts, it may be able to handle a slightly 

higher load than an implementation that uses multiple processes. 

The key to programming a single-process concurrent server lies in the use of asynchronous 1/O through the operating system 

primitive select. A server creates a socket for each of the connections it must manage, and then calls select to wait for data to ar 

rive on any of them. In fact, because select can wait for 1/O on all possible sockets, it can also wait for new connections at the 

same time. Algorithm 8.5 lists the detailed steps a single-process server uses. 

12.4 Process Structure Of A Single-Process Server 

Figure 12.1 illustrates the process and socket structure of a single-process, concurrent server. One process manages all 

sockets. 

 
In essence, a single process server must perform the duties of both the master and :lave processes. It maintains a set of 

sockets, with one socket in the set bound to the well-known port at which the master would accept connections. The other 

sockets in the set each correspond to a connection over which a slave would handle requests. The server passes the set of socket 

descriptors as an argument to select, and waits for activity on any of them. When select returns, it passes back a bit mask that 

specifies which of the descriptors in the set is ready. The server uses the order in which descriptors become ready to decide how 

to proceed. 

To distinguish between master and slave operations, a single-process server uses the descriptor. If the descriptor that 

corresponds to the master socket becomes ready, the server performs the same operation the master would perform: it calls 

accept on the socket to obtain a new connection. If a descriptor that corresponds to a slave socket becomes ready, the server 

performs the operation a slave would perform: it calls read to obtain a request, and then answers it. 

12.5 An Example Single-Process ECHO Server 

An example will help clarify the ideas and explain how a single-process, concurrent server works. Consider file 

TCPmechod.c, which contains the code for a single-process server that implements the ECHO service. 

/* TCPmechod.c - main, echo */

#include <sys/types.h>

#include <sys/socket.h>

#include <sys/time.h>

#include <netinet/in.h>
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#include <unistd.h>

#include <string.h>

#include <stdio.h>

#define QLEN 5 /* maximum connection queue length */

#define BUFSIZE 4096

extern int errno;

int errexit(const char *format, ...);

int passiveTCP(const char *service, int qlen);

int echo(int fd);

/*------------------------------------------------------------------------

* main - Concurrent TCP server for ECHO service

*------------------------------------------------------------------------

*/

int

main(int argc, char *argv[])

{

char *service = "echo"; /* service name or port number */

struct sockaddr_in fsin; /* the from address of a client */

int msock; /* master server socket */

fd_set rfds; /* read file descriptor set */

fd_set afds; /* active file descriptor set */

int alen; /* from-address length */

int fd, nfds;

switch (argc) {

case 1:

break;

case 2:

service = argv[1];

break;

default:

errexit("usage: TCPmechod [port]\n");

}

msock = passiveTCP(service, QLEN);

nfds = getdtablesize();
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FD_ZERO(&afds);

FD_SET(msock, &afds);

while (1) {

memcpy(&rfds, &afds, sizeof(rfds));

if (select(nfds, &rfds, (fd_set *)0, (fd_set *)0,

(struct timeval *)0) < 0)

errexit("select: %s\n", strerror(errno));

if (FD_ISSET(msock, &rfds)) {

int ssock;

alen = sizeof(fsin);

ssock = accept(msock, (struct sockaddr *)&fsin,

&alen);

if (ssock < 0)

errexit("accept: %s\n",

strerror(errno));

FD_SET(ssock, &afds);

}

for (fd=0; fd<nfds; ++fd)

if (fd != msock && FD_ISSET(fd, &rfds))

if (echo(fd) == 0) {

(void) close(fd);

FD_CLR(fd, &afds);

}

}

}

/*------------------------------------------------------------------------

* echo - echo one buffer of data, returning byte count

*------------------------------------------------------------------------

*/

int

echo(int fd)

{

char buf[BUFSIZ];

int cc;

cc = read(fd, buf, sizeof buf);

if (cc < 0)
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errexit("echo read: %s\n", strerror(errno));

if (cc && write(fd, buf, cc) < 0)

errexit("echo write: %s\n", strerror(errno));

return cc;

}

The single-process server begins, like the master server in a multiple-process implementation, by opening a passive socket at 

the well-known port. It uses FD_ZERO and FD_SET to create a bit vector that corresponds to the socket descriptors that it 

wishes to test. The server then enters an infinite loop in which it calls select to wait for one or more of the descriptors to become 

ready. 

If the master descriptor becomes ready, the server calls accept to obtain a new connection. It adds the descriptor for the new 

connection to the set it manages, and continues to wait for more activity. If a slave descriptor becomes ready, the server calls pro 

cedure echo which calls read to obtain data from the connection and write to send it back to the client. If one of the slave 

descriptors reports an end-of-file condition, the server closes the descriptor and uses macro FD_CLR to remove it from the set of 

descriptors select uses. 

12.6 Summary 

Execution in concurrent servers is often driven by the arrival of data and not by the timeslicing mechanism in the underlying 

operating system. In cases where the service requires little processing, a single-process implementation can use asynchronous 

I/O to manage connections to multiple clients as effectively as an implementation that uses multiple processes. 

The single-process implementation performs the duties of the master and slave processes. When the master socket becomes 

ready, the server accepts a new connection. When any other socket becomes ready, the server reads a request and sends a reply. 

An example single-process server for the ECHO service illustrates the ideas and shows the programming details. 

FOR FURTHER STUDY 

A good protocol specification does not constrain the implementation. For example, the single-process server described in this 

chapter implements the ECHO protocol defined by Postel [RFC 862]. Chapter 11 shows an example of a multiple-process, con-

;urrent server built from the same protocol specification. 

EXERCISES 

12.1 Conduct an experiment that proves the example ECHO server can handle connections concurrently. 

12.2 Does it make sense to use the implementation discussed in this chapter for the DAYTIME service? Why or why not? 

12.3 Read the UNIX Programmer's  Manual to find out the exact representation of descriptors in the list passed to select.  Write the FD 
SET and FD _CLR macros. 

12.4 Compare the performance of single-process and multiple-process server implementations on a computer with multiple processors. 

Under what circumstances will a single-process version perform better than (or equal to) a multiple-process version? 

12.5 Suppose a large number of clients (e.g., 100) access the example server in this chapter at the same time. Explain what each client 

might observe. 

11.6 Can a single-process server ever deprive one client of service while it repeatedly honors requests from another? Can a multiple-

process implementation ever exhibit the same behavior? Explain.
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